首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Several identified neurons in Aplysia and Tritonia ganglia were shown to contain measurable quantities (4–6 pmol/cell body) of 5-hydroxytryptamine (5-HT). A metabolic correlate for the limited distribution of 5-HT among the neurons of Tritonia is provided by the finding that the enzyme, aromatic acid decarboxylase (AAD), is 500 times more active in nerve cells containing 5-HT than in neurons devoid of the amine. Although all Aplysia neurons have some AAD activity, 5-HT cell bodies in this species are 10-fold more active than cell bodies which do not contain 5-HT. The cytoplasm of 5-HT cell bodies in Aplysia and Tritonia characteristically contains granules that have minimum diameters of approx. 1000 Å and eccentric opaque cores. This type of granule was not found in somata which did not contain measurable 5-HT. These data illustrate the metabolic and morphological specialization in 5-HT-containing neurons of molluscs.  相似文献   

2.
The biosynthesis and metabolism of 5-hydroxytryptamine (serotonin; 5-HT) in the cestode Hymenolepis diminuta was investigated by High Performance Liquid Chromatography (HPLC). Incubation of intact H. diminuta in [3H]tryptophan resulted in substantial radioactivity recovered in 5-HT, 5-hydroxytryptophan (5-HTP), and 5-hydroxyindoleacetic acid (5-HIAA). Furthermore, the tissue levels of 5-HT and 5-HTP, as determined by HPLC with electrochemical detection, were significantly depressed when the animals were deprived of tryptophan. On the other hand, the tissue levels of 5-HTP were significantly increased following incubation with the 5-HTP decarboxylase inhibitor m-hydroxybenzylhydrazine. The synthesis and metabolism of 5-HT are discussed in the light of 5-HT as a physiological transmitter in H. diminuta.  相似文献   

3.
[3H]Adenosine was taken up and metabolized by isolated ganglia of the marine mollusc Aplysia californica. After 2 h, most of the radioactivity was recovered as metabolites, including ATP, ADP, and AMP, as well as the deaminated products, inosine, hypoxanthine, and uric acid. Little remained in the form of adenosine. These pathways were not uniformly distributed among various tissue elements. In most individual neurons, inosine and its breakdown products were the principal metabolites of [3H]adenosine, whereas ATP and other nucleotides predominated in the connective tissue sheath. Endogenous levels of ATP, ADP, AMP, and adenosine in ganglia, sheath, and individual neurons were also determined using a fluorimetric-HPLC assay. The concentrations of the nucleotides were quite uniform in sheath and among the individual neurons assayed (1-5 pmol/microgram of protein); however, concentrations of adenosine were considerably higher in neurons than in the sheath.  相似文献   

4.
Isolated giant serotonin-containing neurons of the cerebral ganglia of Helix pomatia were shown to produce serotonin when incubated with 5-hydroxytryptophan (5-HTP) whereas cells of the buccal ganglia, which are non-amine-containing cells did not. The rate of production was comparable to that for Ach in the isolated neurons of Aplysia. The significance of these results is discussed.  相似文献   

5.
The effect of L-tryptophan, 5-hydroxy-L-tryptophan (5-HTP), and 5-hydroxytryptamine (5-HT) on the K+-evoked release of [3H]5-HT from superfused rat brain synaptosomes was studied. 5-HT at concentrations above 10 nM significantly inhibited the K+-evoked release of [3H]5-HT. A slight enhancement of [3H]5-HT release was observed at a concentration of 5nM. In contrast tryptophan at a concentration of 10 nM significantly enhanced [3H]5-HT release with little effect at higher concentrations. 5-HTP did not significantly effect [3H]5-HT release. The results confirm previous findings that 5-HT inhibits its own release from nerve endings, and demonstrate that low concentrations of tryptophan in the synaptic region may act as a positive feedback regulator of 5-HT release.  相似文献   

6.
Effects of 5-hydroxytryptophan on serotonin in nerve endings   总被引:1,自引:1,他引:0  
—Preparations of synaptosomes (P2) from the telencephalon and from the diencephalon plus optic lobes of the pigeon and from the telencephalon of the rat were used to study the effects of 5-hydroxytryptophan (5-HTP) on (a) the levels of serotonin (5-HT) in nerve endings and (b) the release of 5-HT from nerve endings. The levels of 5-HT were significantly higher (3.21 × 0.35 nmol/g original tissue weight) in the P2 fraction isolated from the telencephalon of pigeons given intramuscular injections of 50mg/kg of d ,l -5-HTP in comparison to control values (1.42 ± 0.07). A similar twofold increase was observed with the P2 fraction isolated from the diencephalon plus optic lobes. In addition, the levels of 5-HTP and 5-hydroxyindoleacetic acid also increased significantly in these P2 fractions isolated from pigeons given d ,l -5-HTP injections in comparison to values obtained for pigeons given saline injections. In vitro studies using preparations of synaptosomes (from both pigeon and rat) labelled with [3H]5-HT indicated that 0.10 mil l -5-HTP increased the release of [3H]5-HT twofold over control values. A concentration as low as 0.001 mm l -5-HTP was tested on the P2 fraction from the telencephalon of the pigeon and was found to significantly increase the release of [3H]5-HT over control values. This effect by l -5-HTP was blocked if a decarboxylase inhibitor was added to the medium. l -5-HTP at a concentration of 1.5 mm had no apparent effect on the release of [3H]norepinephrine or [3H]dopamine from synaptosomes prepared from the telencephalon of the rat or pigeon. The results are discussed in terms of the role of serotonin in producing certain types of behavioral depressions exhibited by pigeons and rats given injections of 5-HTP.  相似文献   

7.
PKA type I and type II are activated in Aplysia neurons by stimulation with serotonin (5-HT), which causes long-term facilitation (LTF). The proteolysis of the regulatory subunit (R) is thought important for the persistent activation of PKA, which is necessary to produce LTF. In this study, we report that the type I regulatory subunit (RI) and type II regulatory subunit (RII) are differentially regulated by proteolytic cleavage. RI, but not RII, was selectively cleaved after 5-HT treatment for 2h in Aplysia neurons. Interestingly, the proteasome inhibitor MG132 inhibited the cleavage of RI caused by 5-HT treatment in Aplysia neuron. Besides extracts from Aplysia ganglia treated with 5-HT cleaved (35)S-labeled RI synthesized in vitro, but not (35)S-labeled RII. This suggests that 5-HT induces the activation state of RI-specific proteolytic cleavage.  相似文献   

8.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

9.
Abstract— The levels of the amino acids glycine, aspartic acid and glutamic acid were determined in the ganglia and in identified neurons of A. californica. All of the determinations were done by gas chromatography–mass spectrometry–selected ion monitoring using deuterium-labelled amino acids as internal standards. Aspartate and glutamate concentrations vary 2- to 3-fold among the ganglia and individual neurons. Glycine levels are 3–10 times higher in the abdominal ganglion than in the other ganglia. This is in large part due to the glycine concentrations in the abdominal ganglion neurons R3–R14 being about 20 times higher than in the somata of most other Aplysia neurons. The concentrations of all three amino acids are several times lower in the muscle than in ganglia, and orders of magnitude lower in the hemolymph than in tissue.  相似文献   

10.
Abstract— The activities of aromatic amino acid decarboxylase (EC 4.1.1.26) in various ganglia, nerve trunks, and individual identifiable neurons of Aplysia culifornica were measured. The distribution of the decarboxylase enzyme is ubiquitous throughout the central nervous system of the Aplysia . Every Aplysia neuron tested contained some decarboxylase activity. The presence of this particular synthetic enzyme in an Aplysia neuron, therefore, cannot be used to classify these neurons as 'aminergic'.  相似文献   

11.
In the marine mollusk Aplysia limacina, a substantial amount of endogenous D-aspartic acid (D-Asp) was found following its synthesis from L-aspartate by an aspartate racemase. Concentrations of D-Asp between 3.9 and 4.6 micromol/g tissue were found in the cerebral, abdominal, buccal, pleural, and pedal ganglia. In non nervous tissues, D-Asp occurred at a very low concentration compared to the nervous system. Immunohistochemical studies conducted on cultured Aplysia neurons using an anti-D-aspartate antibody demonstrated that D-Asp occurs in the soma, dendrites, and in synaptic varicosities. Synaptosomes and synaptic vesicles from cerebral ganglia were prepared and characterized by electron microscopy. HPLC analysis revealed high concentrations of D-Asp together with L-aspartate and L-glutamate in isolated synaptosomes In addition, D-Asp was released from synaptosomes by K+ depolarization or by ionomycin. D-Asp was one of the principal amino acids present in synaptic vesicles representing about the 25% of total amino acids present in these cellular organelles. Injection of D-Asp into live animals or addition to the incubation media of cultured neurons, caused an increase in cAMP content. Taken as a whole, these findings suggest a possible role of D-Asp in neurotransmission in the nervous system of Aplysia limacina.  相似文献   

12.
The effects ofD,L--chlorophenylalanine methyl ester (PCPA-methyl ester) and two of its metabolites, 2-(-chlorophenyl)-ethylamine (PCPEA) and -chlorophenylacetic acid (PCPAA), on the metabolism of serotonin (5-HT) fromD,L-5-hydroxytryptophan (5-HTP) ware studied in vitro and in vivo using the telencephalon and brainstem of the rat. For in vivo studies and some in vitro experiments, rats were injected with either 100 mg/kg PCPA-methyl ester or saline alone on days 1, 2, and 3, and were killed on day 15. When the in vivo metabolism of 5-HT was to be studied, the saline group and the PCPA group of animals were injected with 75 g/kg [3H]D,L-5-HTP 20 min before sacrificing. With respect to the values found for the saline-injected animals, the specific activity (S.A.; dpm/nmol) of 5-HIAA was significantly greater in the telencephanol and brainstem of the animals injected with PCPA-methyl ester. The S.A. of 5-HTP was the same in both groups; the S.A. of 5-HT was lower in the telencephalon of the PCPA group than in the saline group; in the brainstem, there was no difference. In both the saline- and PCPA-injected animals, the S.A. of 5-HIAA was greater than the S.A. of 5-HT. There was no difference between the saline- and PCPA-injected animals with regard to: (1)L-5-HTP decarboxylase activity; (2)L-5-HTP-induced release of [3H]5-HT in vitro from crude nerve ending fractions (P2); or (3) in vitro uptake of [3H]D,L-5-HTP and its conversion to [3H]5-HT using the P2 fraction. In vitro studies demonstrated that the PCPEA could directly cause a large increase in the release of [3H]5-HT from the P2 fraction, whereas PCPA and PCPAA had little or no apparent effect. The data were interpreted to suggest that in the telencephalon of the animals treated with PCPA-methyl ester, there was a higher turnover of 5-HT than was found in the saline-treated group.  相似文献   

13.
Recent studies indicate that there may be multiple subtypes of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites. Mianserin and spiperone inhibited the specific binding of [3H]5-HT (2-3 nM) to rat brain cortical membranes with shallow displacement curves. The displacement data for spiperone were best described by the presence of three independent binding sites, for which spiperone had high, medium, and low affinities. The displacement data for mianserin were best fitted by two independent, high- and low-affinity sites. The inclusion of mianserin (250 nM) to inhibit [3H]5-HT binding to the mianserin-sensitive site selectively blocked one of the sites discriminated by spiperone. These results suggest the presence of three binding sites for [3H]5-HT, one blocked by low concentrations of spiperone (5-HT1A), one blocked by low concentrations of mianserin (5-HT1C), and one blocked only by high concentrations of both mianserin and spiperone (5-HT1B). Regional differences in the relative densities of the three sites were observed. The hippocampus was rich in 5-HT1A sites, whereas the striatum contained mainly 5-HT1B and 5-HT1C sites. Selective degeneration of 5-HT-containing nerve terminals induced by the neurotoxin 5,7-dihydroxytryptamine increased binding to all three sites in the cerebral cortex. Binding of [3H]5-HT to the three sites was differentially modulated by CaCl2 and guanylimidodiphosphate. The present data suggest the presence of three independent 5-HT1 binding sites having different affinities for mianserin and spiperone and having different regional distributions.  相似文献   

14.
Dopamine (DA) was measured in various tissue extracts as [3H]methoxy-N-acetyldopamine after incubation with two partially purified enzymes, catechol-O-methyl transferase (EC 2.1.1.1) and N-acetyltransferase (EC 2.3.1.5), in the presence of [3H]adenosylmethionine and acetyl-CoA. This product can be separated quantitatively from labeled products of norepinephrine and epinephrine by solvent extraction. N-Acetyl-DA can be assayed by omitting the acetylating system from the incubation mixture. The procedure is rapid, convenient for processing large numbers of samples, and has a sensitivity of approximately 0.1 pmol. It has been used to measure DA in ganglia and in individual neurons from gastropod mollusks.  相似文献   

15.
Summary The formaldehyde-induced fluorescence technique had shown 5-hydroxytryptamine-containing enteric neurons in the intestine of the teleost Platycephalus bassensis, but did not reveal such neurons in the intestine of Tetractenos glaber or Anguilla australis. Re-examination of these animals with 5-hydroxytryptamine immunohistochemistry showed immunoreactive enteric neurons in the intestine of all three teleost species. The 5-hydroxytryptamine-containing enteric neurons showed essentially the same morphology in all species examined: the somata were situated in the myenteric plexus, extending down into the circular muscle layer, but none were found in the submucosa; processes were found in the myenteric plexus, the circular muscle layer and the lamina propria. It was concluded that the neurons may innervate the muscle layers or the mucosal epithelium, but were unlikely to be interneurons. In a range of teleosts, enterochromaffin cells were found in the intestine of only those species in which the formaldehyde technique did not visualize neuronal 5-hydroxytryptamine. Available evidence suggests that, in vertebrates, 5-HT-containing enterochromaffin cells are lacking only where there is an innervation of the gut mucosa by nerve fibres containing high concentrations of 5-HT.  相似文献   

16.
We have evaluated the effect of serotonin (5-HT) and of its biosynthetic precursors 5-Hydroxytryptophan (5-HTP) and tryptophan (TRP) on the release of immunoreactive glucagon (IRG) and insulin (IRI) from isolated islets and pieces of pancrease of the rat. In isolated islets, 5-HT inhibited the IRI response to a high glucose concentration (3.0 mg/ml), without affecting the IRG response to either a low (0.5 mg/ml) or a high glucose concentration; TRP stimulated the IRG and IRI response to the low glucose concentration, while 5-HTP was ineffective. When pieces of pancreas were used, 5-HT and 5-HTP inhibited IRG response to both glucose concentrations, while IRI release was inhibited only by 5-HT. The anti-5-HT agent metergoline enhanced the release of IRG and IRI by pieces of pancreas at both glucose concentrations. The results indicate that exogenous and endogenous 5-HT inhibit basal as well as glucose-mediated IRG and IRI release; that isolated islets are less sensitive than pieces of pancreas to the inhibitory effect of 5-HT and that TRP acts as an amino acid and not as a precursor of 5-HT.  相似文献   

17.
Abstract— The effects of i.p. injections of SO mg/kg d,l-5-hydroxytryptophan (5-HTP) and saline alone on the in uitro release of endogenous serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were studied using preparations of axon terminals (P2 isolated from the telencephalon of rats. The level of 5-HT was 2-fold greater and the level of 5-HIAA was 5-fold greater in the P2 fraction isolated from rats given the d,l-5-HTP injection than from rats given saline injections. At 37°C the in vitro efflux of 5-HT and 5-HIAA from the P2 fractions of animals injected with 5-HTP 30min before killing was approx 3 times higher than the saline control group. The amount of 5-HT and 5-HIAA released at 37°C was 3–5 times higher than the amount released at 0°C for both the 5-HTP and saline injected rats. Increasing the concentration of potassium ions in the media to 55 mm significantly increased the release of 5-HT but not 5-HIAA in both groups of animals. The amount of 5-HT released by 55mm-K+ was about 2-fold higher from the P2 fraction isolated from rats given 5-HTP injections with respect to those given saline injections. The potassium stimulated release of 5-HT was calcium dependent. The data thus indicate that injection of 50 mg/kg d,l-5-HTP in rats can cause an increase in the level of 5-HT and 5-HIAA in a crude synaptosomal fraction and that as a result of this increase, there is a temperature dependent increased release of 5-HT and 5-HIAA under normal resting membrane conditions. There is also an increased release of 5-HT as a result of membrane depolarizing conditions induced by elevated potassium levels which is calcium dependent.  相似文献   

18.
Isolated ganglia from Aplysia californica rapidly took up [14C]glycine or [14C]aspartate from a sea-water medium. Approximately 20% of the tissue radioactivity was recovered in the peptides beta-aspartylglycine and glutathione after incubation with [14C]glycine. Compared with other individual cells isolated from the abdominal ganglion, the glycine-containing white cells (R3-R14) incorporated less [14C]glycine into beta-aspartylglycine, but similar amounts into glutathione. In contrast, [14C]aspartate was metabolized primarily to nonamino dicarboxylic acids and relatively little radioactivity was incorporated into beta-aspartylglycine.  相似文献   

19.
Cephalopods are unique among mollusks in exhibiting an elaborate central nervous system (CNS) and remarkable cognitive abilities. Despite a profound knowledge of the neuroanatomy and neurotransmitter distribution in their adult CNS, little is known about the expression of neurotransmitters during cephalopod development. Here, we identify the first serotonin-immunoreactive (5-HT-ir) neurons during ontogeny and describe the establishment of the 5-HT system in the pygmy squid, Idiosepius notoides. Neurons that are located dorsally to each optic lobe are the first to express 5-HT, albeit only when the lobular neuropils are already quite elaborated. Later, 5-HT is expressed in almost all lobes, with most 5-HT-ir cell somata appearing in the subesophageal mass. Further lobes with numerous 5-HT-ir cell somata are the subvertical and posterior basal lobes and the optic and superior buccal lobes. Hatching squids possess more 5-HT-ir neurons, although the proportions between the individual brain lobes remain the same. The majority of 5-HT-ir cell somata appears to be retained in the adult CNS. The overall distribution of 5-HT-ir elements within the CNS of adult I. notoides resembles that of adult Octopus vulgaris and Sepia officinalis. The superior frontal lobe of all three species possesses few or no 5-HT-ir cell somata, whereas the superior buccal lobe comprises many cell somata. The absence of 5-HT-ir cell somata in the inferior buccal lobes of cephalopods and the buccal ganglia of gastropods may constitute immunochemical evidence of their homology. This integrative work forms the basis for future studies comparing molluscan, lophotrochozoan, ecdysozoan, and vertebrate brains.  相似文献   

20.
Histamine (HA) is present in substantial quantities in all ganglia of Aplysia californica. Within the cerebral ganglia this amine is known to be concentrated in at least two identified neurons designated C-2 neurons. In this study a combination of chemical and enzymatic analyses was employed to provide evidence for the existence of a biochemical pathway for HA synthesis in ganglia and individual neurons of this marine mollusk. Examination of extracts of individual neurons dissected from ganglia organ-cultured in the presence of [3H]histidine showed that every neuron accumulated labelled histidine, but only the HA-containing C-2 neurons synthesized and stored labelled HA suggesting that the formation of HA in Aplysia could be catalyzed by the enzyme histidine decarboxylase (HDC). HDC activity was studied with a new microradiometric assay. Many of the properties of the molluscan HDC studied were found to correspond to the vertebrate enzyme. Enzyme activity was inhibited by α-hydrazino-histidine but unaffected by concentrations of α-methyldopa or by 5-(3,4-dihydroxycinnamoyl) salicylic acid which produced nearly complete inhibition of aromatic amino acid decarboxylase activity. HDC was measurable in nervous but not other Aplysia tissues assayed. All 5 major ganglia contained HDC activity which spanned a 15-fold range between the least and most active ganglia. Only 4 of the 13 nerve trunks assayed yielded measurable enzymic activity; these active nerves were associated with the cerebral ganglia which has the highest HDC activity of all measured ganglia. Of the numerous individual neurons assayed for HDC, only the C-2 cells showed measurable enzyme activity, about 25 pmol/cell/h or 70 μmol/g protein/h. Since the activity of HDC in the HA-containing neurons was at least three orders of magnitude larger than all other neurons assayed in the cerebral and other ganglia, these data appear to provide a direct metabolic basis for the selective presence of HA in these cells, and they indicate that the cellular presence of HDC provides a useful biochemical marker for the location of HA-rich neurons in Aplysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号