首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Background

The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.

Results

The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes.

Conclusions

The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
19.
20.

Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-426) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号