首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objectives

We assessed the prospective association of resting heart rate (RHR) at baseline with peak oxygen uptake (VO2peak) 23 years later, and evaluated whether physical activity (PA) could modify this association.

Background

Both RHR and VO2peak are strong and independent predictors of cardiovascular morbidity and mortality. However, the association of RHR with VO2peak and modifying effect of PA have not been prospectively assessed in population studies.

Methods

In 807 men and 810 women free from cardiovascular disease both at baseline (1984–86) and follow-up 23 years later, RHR was recorded at both occasions, and VO2peak was measured by ergospirometry at follow-up. We used Generalized Linear Models to assess the association of baseline RHR with VO2peak, and to study combined effects of RHR and self-reported PA on later VO2peak.

Results

There was an inverse association of RHR at baseline with VO2peak (p<0.01). Men and women with baseline RHR greater than 80 bpm had 4.6 mL·kg−1·min−1 (95% confidence interval [CI], 2.8 to 6.3) and 1.4 mL·kg−1·min−1 (95% CI, −0.4 to 3.1) lower VO2peak at follow-up compared with men and women with RHR below 60 bpm at baseline. We found a linear association of change in RHR with VO2peak (p = 0.03), suggesting that a decrease in RHR over time is likely to be beneficial for cardiovascular fitness. Participants with low RHR and high PA at baseline had higher VO2peak than inactive people with relatively high RHR. However, among participants with relatively high RHR and high PA at baseline, VO2peak was similar to inactive people with relatively low RHR.

Conclusion

RHR is an important predictor of VO2peak, and serial assessments of RHR may provide useful and inexpensive information on cardiovascular fitness. The results suggest that high levels of PA may compensate for the lower VO2peak associated with a high RHR.  相似文献   

2.
The aim of this study was to compare: i) the physiological and perceptual responses of low-load exercise [(moderate intensity exercise (MI)] with different levels of blood flow restriction (BFR), and ii) MI with BFR on the bike with high intensity (HI) exercise without BFR. The protocol involved large muscle mass exercise at different levels of BFR, and this differentiates our study from others. Twenty-one moderately trained males (age: 24.6 ± 2.4 years; VO2peak: 47.2 ± 7.0 ml.kg-1.min-1, mean ± sd) performed one maximal graded exercise test and seven 5-min constant-load cycling bouts. Six bouts were at MI [40% peak power (Ppeak), 60%VO2peak], one without BFR and five with different levels of BFR (40%, 50%, 60%, 70%, 80% of estimated arterial occlusion pressure). The HI bout (70%Ppeak, 90%VO2peak) was without BFR. Oxygen uptake (VO2), heart rate (HR), blood lactate (BLa), rate of perceived exertion (RPE), and tissue oxygen saturation (TSI) were recorded. Regardless of pressure, HR, BLa and RPE during MI-BFR were higher compared to MI (p < 0.05, ES: moderate to very large), and TSI reduction was greater in MI-BFR than MI (p < 0.05, ES: moderate to large). The responses of VO2, HR, BLa, RPE and TSI induced by the different levels of BFR in MI-BFR were similar. Regardless of pressure, the responses of VO2, HR, BLa and RPE induced by MI-BFR were lower than HI (p < 0.05), except for TSI. TSI change was similar between MI-BFR and HI. It appears that BFR equal to 40% of arterial occlusion pressure is sufficient to reduce TSI when exercising with a large muscle mass.  相似文献   

3.
4.
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.  相似文献   

5.
The aim of this study was to examine in team sports athletes the relationship between repeated sprint ability (RSA) indices and both aerobic and anaerobic fitness components. Sixteen team-sport players were included (age, 23.4 ± 2.3 years; weight, 71.2 ± 8.3 kg; height, 178 ± 7 cm; body mass index, 22.4 ± 2 kg · m−2; estimated VO2max, 54.16 ± 3.5 mL · kg−1 · min−1). Subjects were licensed in various team sports: soccer (n = 8), basketball (n = 5), and handball (n = 3). They performed 4 tests: the 20 m multi-stage shuttle run test (MSRT), the 30-s Wingate test (WingT), the Maximal Anaerobic Shuttle Running Test (MASRT), and the RSA test (10 repetitions of 30 m shuttle sprints (15 + 15 m with 180° change of direction) with 30 s passive recovery in between). Pearson''s product moment of correlation among the different physical tests was performed. No significant correlations were found between any RSA test indices and WingT. However, negative correlations were found between MASRT and RSA total sprint time (TT) and fatigue index (FI) (r = -0.53, p < 0.05 and r = -0.65, p < 0.01, respectively). No significant relationship between VO2max and RSA peak sprint time (PT) and total sprint time (TT) was found. Nevertheless, VO2max was significantly correlated with the RSA FI (r = -0.57, p < 0.05). In conclusion, aerobic fitness is an important factor influencing the ability to resist fatigue during RSA exercise. Our results highlighted the usefulness of MASRT, in contrast to WingT, as a specific anaerobic testing procedure to identify the anaerobic energy system contribution during RSA.  相似文献   

6.

Background

While the ergogenic effect of sodium bicarbonate (BICA) on short-term, sprint-type performance has been repeatedly demonstrated, little is known about its effectiveness during prolonged high-intensity exercise in well-trained athletes. Therefore, this study aims to examine the influence of BICA on performance during exhaustive, high-intensity endurance cycling.

Methods

This was a single-center, double-blind, randomized, placebo-controlled cross-over study. Twenty-one well-trained cyclists (mean ± SD: age 24±8 y, BMI 21.3±1.7, VO2peak 67.3±9.8 ml·kg−1·min−1) were randomly allocated to sequences of following interventions: oral ingestion of 0.3 g·kg−1 BICA or 4 g of sodium chloride (placebo), respectively. One h after ingestion subjects exercised for 30 min at 95% of the individual anaerobic threshold (IAT) followed by 110% IAT until exhaustion. Prior to these constant load tests stepwise incremental exercise tests were conducted under both conditions to determine IAT and VO2peak. Analysis of blood gas parameters, blood lactate (BLa) and gas exchange measurements were conducted before, during and after the tests. The main outcome measure was the time to exhaustion in the constant load test.

Results

Cycling time to exhaustion was improved (p<0.05) under BICA (49.5±11.5 min) compared with placebo (45.0±9.5 min). No differences in maximal or sub-maximal measures of performance were observed during stepwise incremental tests. BICA ingestion resulted in an increased pH, bicarbonate concentration and BLa before, throughout and after both exercise testing modes.

Conclusion

The results suggest that ingestion of BICA may improve prolonged, high-intensity cycling performance.

Trial Registration

German Clinical Trials Register (DRKS) DRKS00006198.  相似文献   

7.
The present study was conducted to validate the applicability of Cooper''s 12-minute run test (CRT) for predicting VO2max in male university students of Kolkata, India, to bypass the exhaustive and complicated protocol of direct estimation of VO2max. Eighty-eight sedentary male university students recruited by simple random sampling from the University of Calcutta, Kolkata, were randomly assigned to the study group (N = 58) and the confirmatory group (N = 30). VO2max of each participant was determined by the direct procedure and the indirect CRT method. The mean value of predicted VO2max (PVO2max) (42.8±4.0 ml · kg−1 · min−1 with a range of 33.7–50.9) showed a significant difference with VO2max (39.8±4.0 ml · kg−1 · min−1 with a range of 33.5–47.7) in the study group. Limits of agreement between PVO2max and VO2max were large enough (0.10 to 5.94 ml · kg−1 · min−1) with poor confidence intervals indicating inapplicability of the current protocol of CRT in the studied population. The prediction norm [Y = 21.01X – 11.04 (SEE = 0.193 ml · kg−1 · min−1)] was computed from the significant correlation (r = 0.93, P < 0.001) between distance covered in CRT and VO2max. Application of this norm in the confirmatory group revealed an insignificant difference between PVO2max and VO2max. The modified equation is recommended for application of CRT as a valid method to evaluate the cardiorespiratory fitness in terms of VO2max in sedentary male Indian youth.  相似文献   

8.

Purpose

To provide a large reference material on key cardio-respiratory variables in a healthy population of Norwegian men and women aged 20–90 years.

Methods

Sub maximal and peak levels of cardio-respiratory variables were measured using cardiopulmonary exercise testing during treadmill running.

Results

The highest peak ventilation among men (141.9±24.5 L·min−1) and women (92.0±16.5 L·min−1) was observed in the youngest age group (20–29 years, sex differences p<0.001) with an average 7% reduction per decade. The highest tidal volumes were observed in the 30–39 and 40–49 year age groups among men (2.94±0.46 L) and women (2.06±0.32 L) (sex differences p<0.001), with a subsequent average 6% reduction per decade. Ventilatory threshold and respiratory compensation point were observed at approximately 77% and 87% of peak oxygen uptake (VO2peak) among men and women, respectively. The best ventilatory efficiency (EqVCO2Than) was observed in the youngest age group (20–29 years) in both men (26.2±2.8) and woman (27.5±2.7) (sex differences p<0.001) with an average 3% deterioration in ventilatory efficiency per decade.

Conclusion

This is the largest European reference material of cardio-respiratory variables in healthy men and women aged 20–90 years, establishing normal values for, and associations between key cardio-respiratory parameters. This will be useful in clinical decision making when evaluating cardiopulmonary health in similar populations.  相似文献   

9.

Background

High aerobic fitness is consistently associated with a favorable metabolic risk profile in children. Direct measurement of peak oxygen consumption (VO2peak) is often not feasible, thus indirect tests such as the Andersen test are required in many settings. The present study seeks to determine the reliability and validity of the Andersen test in 10-year-old children.

Methods

A total of 118 10-year-old children (67 boys and 51 girls) were recruited from one school and performed four VO2peak tests over three weeks: three Andersen tests (indirect) and one continuous progressive treadmill test (direct). Of these, 104 children provided valid data on all Andersen tests and 103 children also provided valid data on the direct treadmill test. Reliability and validity were assessed using Bland Altman plots and linear regression analysis.

Results

Bias (mean change) and random error (limits of agreement) were 26.7±125.2 m for test 2 vs. test 1 (p<.001 for mean difference) and 3.9±88.8 m for test 3 vs. test 2 (p = .514 for mean difference). The equation to estimate VO2peak suggested by Andersen et al. (2008) showed a poor fit in the present sample; thus, we suggest a new equation: VO2peak = 23.262+0.050*Andersen distance –3.858*gender –0.376*body weight (R2 = 0.61, standard error of the estimate = 5.69, p<.001, boys = 0, girls = 1).

Conclusions

The Andersen test provided reliable and valid data on a group level. However, a substantial degree of individual variability was found for estimates of VO2peak. Researchers should be aware of the amount of noise in indirect tests that estimate aerobic fitness.  相似文献   

10.
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.  相似文献   

11.
The purpose of this study was to determine both the independent and additive effects of prior heavy-intensity exercise and pacing strategies on the VO2 kinetics and performance during high-intensity exercise. Fourteen endurance cyclists (VO2max  = 62.8±8.5 mL.kg−1.min−1) volunteered to participate in the present study with the following protocols: 1) incremental test to determine lactate threshold and VO2max; 2) four maximal constant-load tests to estimate critical power; 3) six bouts of exercise, using a fast-start (FS), even-start (ES) or slow-start (SS) pacing strategy, with and without a preceding heavy-intensity exercise session (i.e., 90% critical power). In all conditions, the subjects completed an all-out sprint during the final 60 s of the test as a measure of the performance. For the control condition, the mean response time was significantly shorter (p<0.001) for FS (27±4 s) than for ES (32±5 s) and SS (32±6 s). After the prior exercise, the mean response time was not significantly different among the paced conditions (FS = 24±5 s; ES = 25±5 s; SS = 26±5 s). The end-sprint performance (i.e., mean power output) was only improved (∼3.2%, p<0.01) by prior exercise. Thus, in trained endurance cyclists, an FS pacing strategy does not magnify the positive effects of priming exercise on the overall VO2 kinetics and short-term high-intensity performance.  相似文献   

12.
Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kinetics would be faster and the VO2 primary amplitude would be higher, leading to longer exercise time at VO2max. Six subjects (mean ± SD; age: 22.9±4.5 yr; height: 181.2±7.1 cm and body mass: 75.5±3.4 kg) completed square-wave transitions to 100% of VO2max from three different conditions: without prior exercise, with prior moderate and heavy exercise. VO2 was measured using a telemetric portable gas analyser (K4b2, Cosmed, Rome, Italy) and the data were modelled using either mono or double exponential fittings. The use of prior moderate exercise resulted in a faster VO2 pulmonary kinetics response (τ1 = 13.41±3.96 s), an improved performance in the time to exhaustion (238.8±50.2 s) and similar blood lactate concentrations ([La]) values (11.8±1.7 mmol.L−1) compared to the condition without prior exercise (16.0±5.56 s, 215.3±60.1 s and 10.7±1.2 mmol.L−1, for τ1, time sustained at VO2max and [La], respectively). Performance of prior heavy exercise, although useful in accelerating the VO2 pulmonary kinetics response during a subsequent time to exhaustion exercise (τ1 = 9.18±1.60 s), resulted in a shorter time sustained at VO2max (155.5±46.0 s), while [La] was similar (13.5±1.7 mmol.L−1) compared to the other two conditions. Although both prior moderate and heavy exercise resulted in a faster pulmonary VO2 kinetics response, only prior moderate exercise lead to improved rowing performance.  相似文献   

13.
Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.  相似文献   

14.

Background

Impaired mitochondrial function and ectopic lipid deposition in skeletal muscle and liver have been linked to decreased insulin sensitivity. As growth hormone (GH) excess can reduce insulin sensitivity, we examined the impact of previous acromegaly (AM) on glucose metabolism, lipid storage and muscular ATP turnover.

Participants and Methods

Seven AM (4f/3 m, age: 46±4 years, BMI: 28±1 kg/m2) and healthy volunteers (CON: 3f/4 m, 43±4 years, 26±2 kg/m2) matched for age and body mass underwent oral glucose testing for assessment of insulin sensitivity (OGIS) and ß-cell function (adaptation index, ADAP). Whole body oxidative capacity was measured with indirect calorimetry and spiroergometry. Unidirectional ATP synthetic flux (fATP) was assessed from 31P magnetic resonance spectroscopy (MRS) of calf muscle. Lipid contents of tibialis anterior (IMCLt) and soleus muscles (IMCLs) and liver (HCL) were measured with 1H MRS.

Results

Despite comparable GH, insulin-like growth factor-1 (IGF-I) and insulin sensitivity, AM had ∼85% lower ADAP (p<0.01) and ∼21% reduced VO2max (p<0.05). fATP was similarly ∼25% lower in AM (p<0.05) and related positively to ADAP (r = 0.744, p<0.01), but negatively to BMI (r = −0.582, p<0.05). AM had ∼3fold higher HCL (p<0.05) while IMCLt and IMCLs did not differ between the groups.

Conclusions

Humans with a history of acromegaly exhibit reduced insulin secretion, muscular ATP synthesis and oxidative capacity but elevated liver fat content. This suggests that alterations in ß-cell function and myocellular ATP production may persist despite normalization of GH secretion after successful treatment of acromegaly.  相似文献   

15.
Effects of conventional endurance (CE) exercise and essential amino acid (EAA) supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC) and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS) and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO2peak 4.0 ± 0.5 L∙min-1) were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L∙m-1) LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg) or CE (cycle ergometry performed at the same absolute VO2 as LC) exercise, during which EAA (10 g EAA, 3.6 g leucine) or control (CON, non-nutritive) drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P < 0.05), independent of dietary treatment. EAA enhanced mixed-muscle and sarcoplasmic MPS during exercise, regardless of mode (drink main effect, P < 0.05). Mixed-muscle and sarcoplasmic MPS were higher in recovery for LC than CE (mode main effect, P < 0.05). No other differences or interactions (mode x drink) were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P < 0.05). These data show that, although whole-body protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.  相似文献   

16.

Background

Obese, non-acromegalic persons show lower growth hormone (GH) concentrations at fasting and reduced GH nadir during an oral glucose tolerance test (OGTT). However, this finding has never been studied with regard to whole-body insulin-sensitivity as a possible regulator.

Methods

In this retrospective analysis, non-acromegalic (NonACRO, n = 161) and acromegalic (ACRO, n = 35), non-diabetic subjects were subdivided into insulin-sensitive (IS) and –resistant (IR) groups according to the Clamp-like Index (CLIX)-threshold of 5 mg·kg−1·min−1 from the OGTT.

Results

Non-acromegalic IS (CLIX: 8.8±0.4 mg·kg−1·min−1) persons with similar age and sex distribution, but lower (p<0.001) body-mass-index (BMI = 25±0 kg/m2, 84% females, 56±1 years) had 59% and 70%, respectively, higher (p<0.03) fasting GH and OGTT GH area under the curve concentrations than IR (CLIX: 3.5±0.1 mg·kg−1·min−1, p<0.001) subjects (BMI = 29±1 kg/m2, 73% females, 58±1 years). When comparing on average overweight non-acromegalic IS and IR with similar anthropometry (IS: BMI: 27±0 kg/m2, 82% females, 58±2 years; IR: BMI: 27±0 kg/m2, 71% females, 60±1 years), but different CLIX (IS: 8.7±0.9 vs. IR: 3.8±0.1 mg·kg−1·min−1, p<0.001), the results remained almost the same. In addition, when adjusted for OGTT-mediated glucose rise, GH fall was less pronounced in IR. In contrast, in acromegalic subjects, no difference was found between IS and IR patients with regard to fasting and post-glucose-load GH concentrations.

Conclusions

Circulating GH concentrations at fasting and during the OGTT are lower in non-acromegalic insulin-resistant subjects. This study seems the first to demonstrate that insulin sensitivity rather than body-mass modulates fasting and post-glucose-load GH concentrations in non-diabetic non–acromegalic subjects.  相似文献   

17.

[Purpose]

Heart Rate Recovery (HRR) after maximum exercise is a reactivation function of vagus nerve and an independent risk factor that predicts cardiovascular disease and mortality. Weight loss obtained through dietary programs has been employed as a therapy to reduce risks of cardiovascular disease and obesity.

[Methods]

Eighteen subjects of middle aged obese men (age 44.8 ± 1.6 yrs, BMI 29.7 ± 0.5 kg/m2) were selected for this study. As a weight loss direction, the nutritional direction of low-calorie diet mainly consisted of carbohydrate, protein, and fat has been conducted for 3 months. Blood pressure was measured after overnight fasting, and blood samples were collected from the antecubital vein before and after weight loss program. All the pre- and post-exercise ‘HRR decay constant’s were assessed by using values of HRR (heart recovery rate; 2 minutes) and HR measured after reached to the maximal oxygen uptake (VO2max) exploited the bicycle ergometer.

[Results]

After the completion of weight loss program, body weight and BMI were significantly decreased, but the Heart Rate (HR) after maximum exercise and in steady state were not changed significantly (p > 0.05). The post-exercise HRR after the weight loss did not show significant changes in perspectives of 30 seconds (-16.6 ± 2.3 to -20.2 ± 2.1 beats/min, p > 0.05) and 60 seconds (-33.5 ± 3.4 to -34.6 ± 2.8 beats/min, p > 0.05) respectively but in perspectives of 90 seconds (-40.9 ± 2.6 to -48.1 ± 3.1 beats/min, p < 0.05) and 120 seconds (-48.6 ± 2.6 to -54.3 ± 3.5 beats/min, p < 0.05), they were decreased significantly. Pre-’HRR decay constant’s of 0.294 ± 0.02 %/second were significantly increased to post-values of 0.342 ± 0.03 %/second (p = 0.026). Changes in ‘HRR decay constant’ were significantly correlated with changes in blood glucose (r = -0.471, p < 0.05) and maximal oxygen consumption (VO2max, r = 0.505, p < 0.05) respectively.

[Conclusions]

The low-calorie diet directed to obese middle aged men for 3 months significantly improved the HRR after maximum exercise, and this improvement in cardiovascular autonomic nerve system was estimated to be involved with improvements in blood glucose and maximal oxygen consumption.  相似文献   

18.
There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean±SD: Age 41±7y, Height 1.80±0.04 m, Weight 78.9±4.1 kg, VO2 max 58±3 ml•kg−1•min−1) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (∼5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35±1.53, 38.27±1.80, 40.23±1.98, 40.31±1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294±21 W, 291±22 W, 277±14 W, 276±23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance.  相似文献   

19.
Type 2 diabetes mellitus (T2DM) is associated with increased plasma triglyceride (TG) concentrations, but African Americans (AA) have lower plasma TG than Caucasians (CC). We evaluated the hypothesis that obese AA women have lower plasma TG than obese CC women do because of differences in lipid kinetics. Eleven AA and 11 CC obese women with T2DM, matched on body mass index (BMI) (AA = 37 ± 1, CC = 37 ± 1 kg/m2), age, duration of diabetes, percentage body fat, and insulin sensitivity (SI, determined by an intravenous glucose tolerance test), were studied. Plasma TG concentration (AA = 1.14 ± 0.11, CC = 1.88 ± 0.18 mmol/l), FFA rate of appearance (Ra) into plasma (AA = 419 ± 27, CC = 503 ± 31 µmol·min−1), and total VLDL-TG secretion rate (AA = 18 ± 2, CC = 29 ± 4 µmol·min−1) were lower in AA than CC women (all P < 0.05). In contrast, plasma total apolipoprotein (apo)B-100 concentration (AA = 1,542 ± 179, CC = 1,620 ± 118 nmol/l) and VLDL-apoB-100 secretion rate (AA = 1.3 ± 0.1, CC = 1.3 ± 0.1 nmol·min−1) were similar in both groups, so the molar ratio of VLDL-TG secretion rate to VLDL-apoB-100 secretion rate was lower in AA women than in CC women. VLDL-TG concentration was lower in AA women due to lower total VLDL-TG secretion rate. However, the VLDL-apoB-100 secretion rate was the same in both groups, demonstrating that AA women secrete smaller VLDL particles containing less TG than do CC women.  相似文献   

20.

[Purpose]

The purpose of this study was to investigate the effect of unaccustomed downhill running on muscle damage, oxidative stress, and leukocyte apoptosis.

[Methods]

Thirteen moderately trained male subjects performed three 40 min treadmill runs at ~70% VO2max on separate days: a level run (L) followed by two downhill runs (DH1 and DH2). Blood samples were taken at rest (PRE) and immediately (POST), 2 h, 24 h, and 48 h after each run. Data were analyzed using 2-way repeated measures ANOVA with post hoc Tukey tests.

[Results]

Creatine kinase (CK) activity and oxidative stress level were significantly elevated at 24 h and 48 h following DH1 (P < 0.05). The level of oxidative stress at the POST measurement following DH1 and DH2 was greater than PRE. The rate of leukocyte apoptosis was significantly increased at the POST measurement following all three runs, and remained elevated for up to 48 h following DH1 (P < 0.01).

[Conclusion]

CK activity and oxidative stress were elevated following an acute bout of moderate intensity downhill running, resulting in a greater apoptotic response at 24 h and 48 h post-exercise in comparison with level grade running or a second downhill run. These elevations were blunted following DH2. Although the link between exercise-induced muscle damage and leukocyte apoptosis is currently unknown, the differential response to DH1 vs. L and DH2 indicates that it may be mediated by the elevation of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号