首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 μm in diameter and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 μm in diameter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion and electron densities turned out to be equal to n i≈4×1019 cm−3 and n e≈4×1020 cm−3, respectively, and the electron temperature was T e≈40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The sources of soft X-ray emission in hydrogen-and helium-like aluminum lines were the bright spots and local objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of 1021–1022 cm−3. The possibility of both the generation of an axial magnetic field during the liner implosion and the conversion of the energy of this field into soft X-ray emission is discussed. __________ Translated from Fizika Plazmy, Vol. 28, No. 6, 2002, pp. 514–521. Original Russian Text Copyright ? 2002 by Bakshaev, Blinov, Dan'ko, Ivanov, Klír, Korolev, Kravárik, Krása, Kubeš, Tumanov, Chernenko, Chesnokov, Shashkov, Juha.  相似文献   

2.
A method is developed for measurements of laser radiation scattering by wires and fibers in different types of imploding arrays in the initial stage of plasma production at discharge currents per wire of up to 2 kA for aluminum arrays and up to 8 kA for tungsten arrays. The experiments were carried out on the Angara-5-1 facility at a current density in the wires of 108 A/cm2 and current growth rate of ~1013 A/s. It is found that the indicatrix of laser radiation reflected from the wires (fibers) in cylindrical and conical arrays is modified at currents of 0.1–10 kA per wire (fiber). The experimental data on the reflection and scattering of laser radiation from wires and fibers are compared with the results of numerical simulations of their electric explosion in vacuum. It is proposed that the change in the reflection indicatrix of laser radiation is caused by the onset of thermal instabilities. The typical size of density and temperature inhomogeneities on the wire surface is in a range of 10–20 μm, which probably results in a transition from specular to diffuse reflection of laser radiation. A simultaneous abrupt (over 2–3 ns) reduction in the reflection intensity from several wires of an array indicates a homogeneous distribution of the discharge current over the irradiated wires. This closes the issue of the quality of the contact between the wires and the electrodes. The obtained experimental information is of considerable importance for the development of numerical codes for simulations of the implosion of wire arrays and the refinement of the wire parameters in the initial stage of plasma production.  相似文献   

3.
Results are presented from Z-pinch experiments performed in the S-300 facility (Kurchatov Institute) at a maximum current of 2 MA and current rise time of 100 ns. The Z-pinch load was a 1-cm-long 1-cmdiameter cylindrical array made of 40 tungsten wires with a total mass of 160 μg, at the axis of which a 100-μm-diameter (CD2) n deuterated fiber was installed. Hard X-ray and neutron signals were recorded using five scintillation detectors oriented in one radial and two axial directions. The maximum neutron yield from the DD reaction reached 3 × 109 neutrons per shot. The average neutron energy was determined from time-of-flight measurements and Monte Carlo simulations under the assumption that the neutron emission time was independent of the neutron energy. The average neutron energy in different experiments was found to vary within the range 2.5–2.7 MeV. The fact that the average neutron energy was higher than 2.45 MeV (the energy corresponding to the DD reaction) is attributed to the beam-target collisional mechanism for the acceleration of deuterons to 100–500 keV.  相似文献   

4.
Results are presented from experimental studies of Z-pinches produced by implosion of aluminum and tungsten cylindrical wire arrays in the Angara-5-1 facility. The electron temperature T e and density n e of the high-temperature pinch plasma have been determined by analyzing line emission from multicharged ions. For the same mass and radius of the array and the same number of wires in it, the intensity of line emission of H- and He-like Al ions from an imploded Al + W wire array containing even a small amount of tungsten (7 wt %) is one order of magnitude lower than that from an Al array. As the W content increases, the total soft X-ray (SXR) yield increases, while the duration of the SXR pulse decreases. For the 30% W content in the array, the power and duration of the SXR pulse are nearly the same as those recorded during the implosion of a W array with the same linear mass and radius and the same number of wires. Results are also presented from experiments with nested wire arrays in which the outer and inner shells were made of Al and W wires, respectively. It is found that, in this case, the effect of tungsten on the line emission of aluminum is much weaker than that in experiments with arrays in which tungsten and aluminum wires were placed in the same shell, even if the mass of the inner (tungsten) shell was larger than that of the outer (aluminum) one. At the same time, the inner W shell plays a significant role in the implosion dynamics of a nested wire array, reducing the duration of the SXR pulse and increasing the SXR power.  相似文献   

5.
Results are presented from measurements of the azimuthal magnetic field generated during the implosion of double (nested) tungsten wire arrays in the Angara-5-1 facility at currents of ~3 MA. It is found that the inner array affects the current distribution in the interarray space and that there is an optimal mass (an optimal number of wires) of the inner array at which the full width at half-maximum of the soft X-ray pulse (in the photon energy range of >100 eV) is minimal. On the average, double wire arrays provide a better reproductibility, higher power, and shorter duration of the soft X-ray pulse in comparison to single arrays.  相似文献   

6.
Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100–200 μm. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300–600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10–40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (hν > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.  相似文献   

7.
The development of a preformed constriction in cylindrical agar-agar loads at currents of up to 3 MA is studied experimentally. The loads 3–5 mm in diameter have a mass density of 0.1 g/cm3 and are filled with different materials. Due to the implosion of the constriction to a minimum size of 40–70 μm, a hot dense plasma (with the electron density n e=1022 cm−3, electron temperature T e=0.8–1.5 keV, and ion temperature T i=3–12 keV) is produced. It is found that the ion temperature substantially exceeds the electron temperature. The lifetime of the high-temperature plasma determined from the FWHM of a soft X radiation (SXR) pulse is shorter than 5 ns, the radiation power of photons with energies of ≥1 keV is higher than 0.5×1010 W, and their total energy attains 50 J. High-speed photography in the VUV, SXR, and optical spectral regions indicates the protracted generation of the high-temperature plasma. Calculations by the two-dimensional ideal MHD model of the Z-pinch show that the most important consequence of the protracted plasma generation in the constriction region is that the current is intercepted by a freshly produced plasma. In the course of plasma generation, the current near the axis inside the region of radius 50 μm is at most one-half of the total current. After the plasma generation comes to an end, almost the entire current is concentrated in this region for several nanoseconds; this process is accompanied by a sharp increase in the plasma temperature. __________ Translated from Fizika Plazmy, Vol. 27, No. 12, 2001, pp. 1101–1110. Original Russian Text Copyright ? 2001 by Bakshaev, Blinov, Vikhrev, Gordeev, Dan’ko, Korolev, Medovshchikov, Nedoseev, Smirnova, Tumanov, Chernenko, Shashkov.  相似文献   

8.
A study of the process of implosion of a cylindrical tungsten wire array by electrical and optical methods shows that it involves two phases. In the first phase, the plasma is produced from the dense wire cores under the action of the heat flux from the current-carrying plasma. This plasma then fills the internal space of the liner array. The measured inductance of the liner and its visible diameter vary only slightly in this phase. During the second phase, the total material of the liner is compressed toward the axis and the inductance of the discharge gap increases. The process of the implosion of wire arrays is studied by analyzing the electric parameters (current and voltage) of the load in the Angara-5-1 facility. The time behavior of the load inductance, the average current radius, and the start time of the liner compression are determined. The compression start time determined from the visible size of the liner is found to coincide with that determined from electric measurements. The compression ratio of the liner in terms of the average current radius turns out to be lower than that measured by optical and X-ray diagnostics. The reason is that, by the instant of maximum compression, only a portion of the current flows at the periphery of the initial wire array.  相似文献   

9.
Results are presented from experimental studies of the spatial distribution of the density of matter in the central part of the discharge gap and the formation of the temporal profile of the X-ray power in the course of implosion of quasi-spherical wire arrays at discharge currents of up to 4 MA. The spatial distribution of the X-ray intensity in the central part of the discharge gap and the temporal profile of the X-ray power are used as implosion characteristics of quasi-spherical wire arrays. The quasi-spherical arrays were formed by the radial stretching of unstrained wires of initially cylindrical and conical wire arrays under the action of the electrostatic field. The temporal profile of the output X-ray pulse in the photon energy range of 0.1–1 keV is shown to depend on both the geometrical parameters of the quasi-spherical array and the longitudinal distribution of its mass. It is found that a 40% increase in the wire mass due to deposition of an additional mass in the equatorial region of a quasi-spherical array leads to a 15% increase in the average current radius of the pinch and a 30% decrease in the X-ray yield. Experiments with quasi-spherical arrays made of kapron fibers with deposited Al and Bi conducting layers were also carried out. It is demonstrated that application of such arrays makes it possible to control the profile and duration of the generated X-ray pulse by varying the mass, material, and location of the deposited layer. It is found that deposition of an additional mass in the form of a thin Bi stripe on tungsten wires near the cathode end of the array allows one to mitigate the influence of the cathode zipper effect on the pinch compression and formation of the X-ray pulse in tungsten arrays.  相似文献   

10.
Results are presented from experiments on the laser generation of X-ray radiation at the wavelength λ=469 ? (ε=26.4 eV) on the 3p(J=0)−3s(J=1) transition of Ne-like Ar ions. Experiments were carried out on the SIGNAL electrophysical facility with a 3.1-mm-diameter 157-mm-long Al2O3 ceramic capillary filled with argon at a pressure of 0.2–1.0 Torr. The discharge current amplitude was I ∼ 25–40 kA, the current rise rate being dI/dt ∼ 1012 A/s. By a vacuum X-ray diode tuned to detect X-ray photons with energies in the range 10–40 eV, laser pulses with a duration of t 1 ∼ 1 ns and maximum energy of E 1,max ∼ 1 μJ were recorded. The pulses were generated 35 ns after the discharge current was switched on. The line spectra in the wavelength range of 150–500 ? showed the bright λ=469 ? line. The angular divergence of the generated X-ray laser beam was estimated to be Δϑ ∼ 2 mrad. Original Russian Text ? O.N. Gilev, V.I. Afonin, V.I. Ostashev, V.Yu. Politov, A.M. Gafarov, A.L. Zapysov, A.V. Andriyash, é.P. Magda, L.N. Shamraev, A.A. Safronov, A.V. Komissarov, N.A. Khavronin, N.A. Pkhaĭko, L.V. Antonova, L.N. Shushlebin, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 2, pp. 160–165.  相似文献   

11.
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.  相似文献   

12.
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m l (θ) ∝ sin–1θ and m l (θ) ∝ sin–2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m l (θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m l (θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.  相似文献   

13.
It is shown that the development of instabilities in a Z-pinch plasma formed by loading a relatively thick Al wire (an initial diameter of 120 μm and a maximum discharge current of 2–3 MA) is slowed down due to the high plasma density in the wire corona. A cylindrically symmetric, regular, and stable corona surrounding the wire contains a helical formation with a dense, cold, and magnetized plasma. X-ray pulses with a photon energy of several keV and an FWHM duration of 10–20 ns are generated by a few imploded neck structures in the pinch phase of the corona evolution (70–100 ns after the current onset). The main part of X radiation emitted by individual bright spots in the photon energy range 1.5–2.4 keV (up to 40 J at a peak power of 4 GW) consists of the continuum and the bound-bound transition radiation from H-and He-like Al ions. A possible scenario for the axial magnetic field evolution during an X-ray pulse is outlined. __________ Translated from Fizika Plazmy, Vol. 28, No. 4, 2002, pp. 329–336. Original Russian Text Copyright ? 2002 by Kubeš, Renner, Krousky, Kravárik, Bakshaev, Blinov, Chernenko, Gordeev, Dan’ko, Korolev, Shashkov.  相似文献   

14.
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.  相似文献   

15.
Results of experiments on the compression of tungsten wire arrays by the plasma current sheath (PCS) of the PF-3 facility at currents of up to 2 MA are presented. The efficiency of current transportation to the wire array and switching-over of the discharge current to the array were studied. Information on the penetration of the magnetic field into the wire array obtained using microprobes made it possible to compare the obtained experimental data with the results of magnetic field measurements carried out at other high-power electrophysical devices. The intensity of plasma production from tungsten wires under the action of the plasma focus PCS is estimated. The experimental results are tested against the existing models of wire array implosion with prolonged plasma production.  相似文献   

16.
Results are presented from measurements of the azimuthal magnetic fields within imploding multiwire tungsten arrays in the Angara-5-1 facility at currents of 2.5–4 MA. It is shown that the penetration of the magnetic field into the axial region of the wire array lags behind the discharge current pulse. The current of a precursor produced at the array axis prior to the implosion of the bulk array mass is measured. It is found that the magnetic field in the initial stage of implosion is azimuthally nonuniform. The mass distribution inside the array is calculated from the measured magnetic field.  相似文献   

17.
Results are presented from experiments on the injection of solid pellets into a plasma heated by an electron beam in the GOL-3 device. For this purpose, two pellet injectors were installed in the device. The target plasma with a density of ~1015 cm?3 was produced in a solenoid with a field of 4.8 T and was heated by a highpower electron beam with an electron energy of ~1 MeV, a duration of ~7 s, and a total energy of 120–150 kJ. Before heating, the pellet was injected into the center of the plasma column transversely to the magnetic field. The injection point was located at a distance of 6.5 or 2 m from the input magnetic mirror. Polyethylene pellets with a mass of 0.1–1 mg and lithium-deuteride pellets with a mass of 0.02–0.5 mg were used. A few microseconds after the electron beam starts to be injected into the plasma, a dense plasma bunch is formed. In the initial stage of expansion, the plasma bunch remains spherically symmetric. The plasma at the periphery of the bunch is then heated and becomes magnetized. Next, the dense plasma expands along the magnetic field with a velocity on the order of 300 km/s. A comparison of the measured parameters with calculations by a hydrodynamic model shows that, in order to provide such a high expansion velocity, the total energy density deposited in the pellet must be ~1 kJ/cm2. This value substantially exceeds the energy density yielded by the target plasma; i.e., the energy is concentrated across the magnetic field onto a dense plasma bunch produced from the evaporated particle.  相似文献   

18.
Results are presented from experimental studies and numerical simulations of the effect of preliminary wire explosion on the parameters of X-ray emission generated during wire array Z-pinch implosion. The wire array implosion was driven by a current pulse with an amplitude of 0.5 MA and a rise time of 0.5 μs, while the preliminary wire explosion was produced by a current pulse with an amplitude of 0.5–1 kA per wire, a rise time of 100 ns, and a full width at half maximum of ~200 ns. The experiments showed that the current prepulse significantly impaired the parameters of X-ray pulses. In particular, along with a decrease in the amplitude and an increase in the duration of the X-ray pulse, its spiky structure became more pronounced. The results of numerical simulations with the use of a one-dimensional radiative MHD code are in good agreement with the parameters of Z-pinch emission in experiments with and without a current prepulse.  相似文献   

19.
Results are presented from experiments on the explosion of 30.5-μm tungsten wires at a current density of up to 140 MA/cm2 and resistive-heating time of 40–100 ns. The experiments were performed both with and without preheating of wires and at different polarities of the high-voltage electrode. The effect of plasma production at the electrodes on the initiation of breakdown along the exploding wire was investigated by using a frame camera. It is shown that, when the polarity of the high-voltage electrode is positive, breakdown begins with the formation of a bright spot on the wire surface near the cathode, whereas at the negative polarity, breakdown begins with the formation of bright spots on the cathode surface. A comparative analysis of the main characteristics of wire explosions is performed. It is shown that preheating of the conductor increases the resistive-heating time and, accordingly, the energy deposited in the wire core. This effect takes place during explosions of both single wires and wire arrays. The evolution of the state of a metal during the explosion (including melting and evaporation) is studied by one-dimensional simulations by using a semiempirical equation of state describing the properties of tungsten over a wide range of parameters.  相似文献   

20.
Processes occurring in a plasma flow generated by a magnetoplasma compressor (MPC) during the formation of the compression zone are discussed. The paper presents results of measurements of the spatial distribution of the electric current in the plasma flow, the temporal and spatial (along the flow) distributions of the plasma density, and the profiles of the velocity of individual flow layers along the system axis. The spatial distribution of the electromagnetic force in the flow is analyzed. It is shown that the plasma flow is decelerated when approaching the compression zone and reaccelerated after passing it. In this case, the plasma flow velocity decreases from ν = (2–3) × 107 cm/s at the MPC output to ν < 106 cm/s in the region of maximum compression and then again increases to 107 cm/s at a distance of 15–17 cm from the MPC output. In some MPC operating modes, a displacement of the magnetic field from the compression zone and the formation of toroidal electric current vortices in the plasma flow after passing the compression zone were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号