首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
本研究根据Ty1-copia类反转录转座子反转录酶的保守区设计简并引物,通过PCR扩增,从裸燕麦(Avena nuda L.)品种‘品燕1号’基因组中分离获得23条Ty1-copia类反转录转座子序列,并对序列特征、系统发育关系及其转录活性进行分析。结果显示,23条Ty1-copia类反转录转座子存在较高的异质性,序列间的一致性为45%~98%,存在插入、移码和终止密码突变,但频率不高;系统发育分析结果表明,燕麦Ty1-copia类反转录转座子在进化过程中主要为垂直传递。本研究通过检索燕麦基因表达数据库,发现了5个有转录活性的Ty1-copia类反转录转座子。  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The Giemsa banding technique used by Fiskesjo in Allium cepa (1974) was modified, and used successfully in band showing of Vicia faba, Secale cereale, Zea mays. Hordeum vulgare, Triticum aestivum, and Triticale. The C-banding characteristics of these crops have been analysed.The band showing effects of ItSG method have been compared with those of BSG method.The banding conditions in plant chromosomes have been discussed.  相似文献   

13.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

14.
15.
Two repeated DNA sequences, pHaS13 and pHaS211, which revealed similarity to the int gene of Ty3-gypsy retrotransposons and the RNAse-H gene of Ty1-copia retroelements, respectively, were surveyed in Asteraceae species and within the genus Helianthus. Southern analysis of the genome of selected Asteraceae that belong to different tribes showed that pHaS13- and pHaS211-related subfamilies of gypsy- and copia-like retroelements are highly redundant only in Helianthus and, to a lesser extent, in Tithonia, a Helianthus strict relative. However, under low stringency posthybridization washes, bands were observed in almost all the other Asteraceae tested when pHaS13 was used as a probe, and in several species when pHaS211 was hybridized. FISH analysis of pHaS13 or pHaS211 probes was performed in species in which labelling was observed in Southern hybridizations carried out under high stringency conditions (Helianthus annuus, Tithonia rotundifolia, Ageratum spp., Leontopodium spp., Senecio vulgaris for pHaS13, and H. annuus, Tithonia rotundifolia, and S. vulgaris for pHaS211). Scattered labelling was observed over all metaphase chromosomes, indicating a large dispersal of both Ty3-gypsy- and Ty1-copia-like retroelements. However, preferential localization of Ty3-gypsy-like sequences at centromeric chromosome regions was observed in all of the species studies but one, even in species in which pHaS13-related elements are poorly represented. Ty1-copia-like sequences showed preferential localization at the chromosome ends only in H. annuus. To study the evolution of gypsy- and copia-like retrotransposons in Helianthus, cladograms were built based on the Southern blot hybridization patterns of pHaS13 or pHaS211 sequences to DNA digests of several species of this genus. Both cladograms agree in splitting the genomes studied into annuals and perennials. Differences that occurred within the clades of perennial and annual species between gypsy- and copia-like retroelements indicated that these retrotransposons were differentially active during Helianthus speciation, suggesting that the evolution of the 2 retroelement families was, within limits, independent.  相似文献   

16.
Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role.  相似文献   

17.
植物反转录转座子及其在功能基因组学中的应用   总被引:6,自引:0,他引:6  
高等植物中的反转录转座子是构成植物基因组的重要成分之一.它分病毒家族和非病毒家族两类,病毒家族包括反转录病毒和类似于反转录病毒的非病毒转座子,病毒家族中的反转录转座子可再细分为Ty3-gypsy类和Ty1-copia类;非病毒家族可细分为LINE类和SINE类.正常情况下大部分反转录转座子不具有活性,某些生物或非生物因素胁迫可激活部分反转录转座子转座.反转录转座子自身编码反转录酶进行转录,以"拷贝-粘贴"的转座模式导致基因组扩增和进化.具有活性的反转录转座子通过插入产生新的突变,可作为一种基因标签技术,应用于功能基因组学研究,并成为研究植物基因功能和表达的重要技术平台.本文综述了近几年来在植物反转录转座子方面的研究进展,主要包括植物反转录转座子的结构、特征、活性及其对基因组的影响和它们在功能基因组学中的应用.  相似文献   

18.
C Linares  Y Loarce  A Serna  A Fominaya 《Chromosoma》2001,110(2):115-123
Two repetitive sequences, As32 and As22, of 826 and 742 bp, respectively, were isolated from Avena strigosa (As genome). Databank searches revealed their high homology to different segments of the family of Ty1-copia retrotransposons. Southern hybridization showed them to be present in diploid and polyploid oat species. Polymerase chain reaction with primers designed to amplify the segment between them showed that As32 and As22 sequences are composed of two different Ty1-copia retrotransposons. The segment amplified from the pAs32 insert was 2,264 bp long and contained the entire GAG and AP domains, and more than half of the IN domain. This new element has been designated TAS-1 (transposon, A. strigosa, 1) and appears to contain a long open reading frame that encodes a polypeptide of 625 amino acids. Slot-blot and fluorescence in situ hybridization analyses revealed it to be a component of both A- and D-genome chromosomes. Further, the chromosomes involved in one C-A intergenomic translocation in A. murphyi (AC genomes), one C-D intergenomic translocation in A. byzantina cv. Kanota (ACD genomes), and two C-D intergenomic translocations in A. sativa cv. Extra Klock, were identified. Based on its physical distribution and Southern hybridization pattern, a parental retro-transposon represented by TAS-1 appears to have been active at least twice during the evolution of the genomes in species of Avena.  相似文献   

19.
Evolutionary conservation of kinetochore protein sequences in plants   总被引:5,自引:0,他引:5  
The evolutionary conservation of structural/functional kinetochore proteins has been studied on isolated nuclei and pro-/metaphase chromosomes of mono- and dicot plants. The cross-reactivities of antibodies against human CENPC, CENPE and CENPF, and against maize CENPCa with the centromeric regions of mitotic chromosomes of Vicia faba and/or Hordeum vulgare are shown. Putative homologs of the kinetochore protein SKP1 (suppressor of kinetochore protein 1p of yeast) were found in both species and of CBF5p (centromere binding factor 5 of yeast) in barley. Antibodies against synthetic peptides derived from partial sequences encoding these proteins were produced and recognized the centromeric regions on mitotic chromosomes as detected by indirect immunofluorescence.  相似文献   

20.
We present an in-depth study of theTy1-copia group of retrotransposons within the plant genusVicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploidVicia species chosen to represent large (V. faba, 1C=13.3 pg), medium (V. melanops, 1C=11.5 pg) and small (V. sativa, 1C=2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, withV. faba containing approximately 106 copies,V. melanops about 1000 copies andV. sativa 5000 copies. The degree of sequence heterogeneity ofTy1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons inV. faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号