首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper reported the production of haploid plants through anther culture in naked oat (Arena nuda). Calluses were induced from anthers of naked oat placed on various culture media. MS medium with 4% sucrose, 1% activated charcoal and no hormones gave the highest initiation frequencies (14.7%) of anther callus among media tested. Twelve green plants and one albino plant have been regenerated from anther calluses. Cytological examination of mitotic rooot tip ceils from three green anther plants showed that two of the plants were haploid (2n=3x=21) and one was diploid (2n=6x=42). The cell suspension cultures were established from pollen friable calluses in liquid medium. The suspension cells were cytologically stable during one year subcultures. Most of the ceils examined were haploid.  相似文献   

2.
Summary The theoretically expected and experimentally observed phenotypic ratios have been compared in populations of haploids derived from chlorophyll mutants of Nicotiana tabacum L. with a known genotypic constitution. The frequencies of mutant genotypes were significantly lower than the expected values, proving the existence of selection in a system of haploid embryoids developing in the anther.The anthers from M1 plants of a diploidized Nicotiana tabacum haploid cv. Samsun, treated with various concentrations of N-nitroso-N-methylurea and n-butylmethane sulphonate, were cultivated in vitro. The number of anthers which gave rise to haploids (embryogenic anthers) was stimulated by lower concentrations of both the mutagens. The stimulation at the level of M1 sporophyte is explained by internal genetic heterogeneity induced by adequate mutagen concentration. The average number of haploids per embryogenic anther decreased in all the treatments. The frequency of haploid plants of the mutant phenotypes increased with increasing mutagen concentration.  相似文献   

3.
Abstract

Considerations about our anther cultures of cultivated plants. – One of the main activities performed at the Casaccia Nuclear Centre, in the framework of a contract between CNEN and the European Communities, centers on the induction of haploid plants by anther culture and the subsequent chromosome doubling in order to obtain completely homozygous diploid plants. In tobacco, it is now possible to obtain haploid plants from any cultivar; we perform in vitro culture of internodes from which homozygous diploid plants are regenerated, taking advantage of natural phenomenon of endopolyploidy. In order to try to generalize this method of producing haploid plants in other plant species, we are studying the mechanism involved in haploid embryogenesis which occurs in vitro in the microspores. Datura, Nicotiana and Atropa are among the genera in which a direct embryogenesis from the microspore is observed; it is interesting to note that all three genera belong to the family Solanaceae and are very rich in alkaloids. In almost all the other cases of in vitro induction of haploids, microspores produce calli from which plantlets can be differentiated, but this way of plant regeneration is less interesting because only few plantlets are obtained and it is not sure that each haploid comes from a single microspore. We examined the factors which could influence the transformation of microspores into embryoids in tobacco, namely: the developmental stage of microspore, the degeneration of tapaetal cells, the genotype of microspore, the composition of cultural media, the physiological conditions of the plant from which the anthers were taken. From a practical point of view, it would be desirable to have informations on methods giving a maximum number of haploid plants from one embryogenic anther and the greatest number of embryogenic anthers from the cultured anthers. Our recent experiments on anther culture in liquid shaken medium have yielded good results (about 7,000 embryoids from 25 embryogenic anthers). Further, we are conducting several experiments in order to synchronize the development of the microspores in the anthers; to this end, we analyse the effect of cold treatment, ionizing radiation and gravity force. Experiments are being performed with other cultivated species, beside tobacco, in order to solve some problems of plant breeding more easily and quickly through haploidy. With the aim of introducing, in cultivated tomato, some desirable characters from the wild species, Lycopersicum peruvianum, (self-incompatibility, disease resistance, simultaneous flowering), we have obtained the interspecific hybrid through in vitro culture of young embryos. Haploid production from this hybrid could allow to quickly obtain various genetic recombinations from these two species. For this purpose we are carrying out anther cultures as well as single microspore cultures. In rice, strawberry and L. peruvianum, several diploid and tetraploid plantlets were obtained from our anther cultures. Work is in progress to ascertain the mode of their origin.  相似文献   

4.
Thin cell layers (TCLs) were cultured from inflorescences of diploid (2n=4x=48) and haploid (2n=2x=24)Nicotiana tabacum L. "Samsun" and the subsequent flowers formed in vitro were then compared to in vivo flowers. Plants derived from TCLs possessed flowers that were typical of their seed or androgenetically-derived counterparts, whereas de novo flowers from TCLs were abnormal when compared to their counterparts. The TCLs of haploid plants produced more flower buds than diploid TCLs, and did so in a shorter period of time. In vitro flowers and anthers at both ploidy levels were considerably smaller than the in vivo flowers; in vitro flowers also had variable numbers of anthers and pistils. The embryogenic capacity of anthers taken from in vivo diploid flowers was 5 times greater than that of in vitro diploid or haploid anthers. In vivo haploid anthers produced no embryoids, whereas in vitro haploid anthers did produce embryoids. Observations of mitotic cells in root tips of plants derived from anther cultures of in vitro haploid flowers revealed a mixoploid nature. Diploid meiosis was regular and haploid meiosis was irregular regardless of the origin (in vitro or in vivo) of the flowers.Supported by state Hatch funds.  相似文献   

5.
Summary Androgenesis occurred from chile pepper (Capsicum annuum L.) anthers incubated in a continuous warm environment (29° C) with continuous light. Forty plantes and embryoids were retrieved from anther cultures and anllyzed for isozyme markers. Of these, 35 exhibited a single allele for markers suggesting microspore origin, while 5 were heterozygous indicating somatic tissue origin. Chromosome numbers were confirmed for 21 plantlets, of which 16 were haploid and 5 were diploid. However, two plants exhibited a single allele for an isozyme marker but possessed the diploid chromosome number, suggesting spontaneous doubling. Anther cultures also produced callus. Nearly 92% of the slow-growing calli sampled were heterozygous for the isozyme marker, suggesting somatic tissue origin. More than 46% of the fast-growing calli exhibited only one allele for the marker, indicating microspore origin. Callus did not regenerate plantlets. The occurrence of both heterozygous and homozygous diploid plantlets from pepper anther cultures has important implications for applied breeding programs.  相似文献   

6.
R. D. Iyer  S. K. Raina 《Planta》1972,104(2):146-156
Summary Haploidy induction through anther culture has been examined in Datura metel and rice with a view to tracing the precise sequence of development of the pollen, either directly or through an intervening callus, into an embryo and seedling. In D. metel, the vegetative cell of the young pollen grain assumes the major role in formation of embryos whereas the generative cell and its few derivatives degenerate. Embryos and seedlings arising directly from pollen without an intervening callus phase always proved to be haploids, whereas those differentiating from pollen-derived callus gave haploid, diploid and even triploid plants. Cytological analysis of callus tissue showed cells of various ploidy levels ranging from haploid to triploid, and in rare instances even with higher chromosome numbers.In rice anther cultures the embryoids arose from an initial callus phase. Of 15 different rice cultivars tried, only four produced a callus, and in only one, was there differentiation of plants, both haploid and diploid ones. Among other species tried, egg plant has also yielded plantlets through a callus phase whereas only callus production has been achieved in jute, tea and petunia. No response has been obtained in wheat, maize, cotton and coconut.Coconut milk (CM) appears to be the most important component of the medium for the initial induction of embryoids and callus in anther cultures of most of the species tried. However, further growth and differentiation of plants may require a simpler medium; in D. metel, continued culture on CM led to dedifferntiation.Dedicated to the memory of the late Dr. J. P. Nitsch.  相似文献   

7.
Summary Ploidy levels of 26Zea mays L. anther culture-derived callus lines of the F1 hybrids (H99 × Pa91, Pa91 × FR16, and H99 × FR16) were determined at various times after culture initiation using flow cytometry (for 21 lines) or chromosome counting of callus cells or regenerated plants (for the remaining 5 lines). Twenty of the lines remained haploid, whereas 6 were diploid. The results from flow cytometry, after examining the DNA content of 5000 nuclei of each callus line, show that each callus line consisted of homogenous haploid or diploid cells. Thus for diploid callus lines, spontaneous chromosome doubling must have occurred before or in the early stages of androgenesis, before the initiation of callus cultures. These long-term callus cultures (growing for up to 38 mo.) have stably maintained their ploidy levels so it is unlikely that the culture conditions have caused chromosome doubling. The restriction fragment length polymorphism pattern obtained with 52 to 58 markers for each diploid callus line shows that all the diploid lines are homozygous diploid so each originated from a microspore and not from diploid maternal F1 hybrid tissue.  相似文献   

8.
Microspore-derived embryos produced from cork oak anther cultures after long-term incubations (up to 10-12 months) were analysed in order to determine the genetic variability and ploidy level stability, as well as morphology, developmental pattern and cellular organisation. Most of the embryos from long-term anther cultures were haploid (90.7%), corresponding to their microspore origin. The presence of a low percentage of diploid embryos (7.4%) was observed. Microsatellite analysis of haploid embryos, indicated different microspores origins of the same anther. In the diploid embryos, homozygosity for different alleles was detected from anther wall tissues, excluding the possibility of clonal origin. The maintenance of a high proportion of haploid embryos, in long-term anther cultures, is similar in percentage to that reported in embryos originating after 20 days of plating (Bueno et al. 1997). This suggests that no significant alterations in the ploidy level occurred during long incubations (up to 12 months). These results suggest that ploidy changes are rare in this in vitro system, and do not significantly increase during long-term cultures. Microscopical studies of the microspore embryos in various stages revealed a healthy and well developed anatomy with no aberrant or chimeric structures. The general morphology of embryos appearing at different times after plating, looked similar to that of earlier embryos, as well as the zygotic embryos, indicating that they represent high quality material for cork oak breeding.  相似文献   

9.
The overall goal of this study is to develop an anther culture system to produce doubled haploid (DH) lines of gentian (Gentiana triflora), an ornamental flowering plant, for use in an F1 hybrid breeding program. Embryogenesis was induced from anther cultures incubated on half-strength modified Lichter (NLN) medium containing a high concentration of sucrose (130 g/l) and subjected to heat shock treatment. Among the various parameters investigated, anthers collected from buds 9–12 mm in length induced the highest frequency of androgenesis. Moreover, among three genotypes tested, cvs. Ashiro-no-Aki and Ashiro-no-Natsu produced 21.3 and 3.7 embryos per 100 anthers, respectively, whereas, cv. Lovely-Ashiro failed to produce embryos. Among a total of 427 embryos transferred to a regeneration medium consisting of Murashige and Skoog (MS) medium, 138 plants were regenerated. The ploidy levels of regenerants were determined by flow cytometry and chromosome counts, revealing the presence of 5% haploids, 25% diploids, and 70% triploids. Inter simple sequence repeat (ISSR) analysis using the 6PS line obtained following self-pollination of the diploid plant obtained from anther culture confirmed that the diploid plant was indeed a DH.  相似文献   

10.
Summary Plants derived from anther culture are theoretically haploid, but diploid plants are also known to arise. Anther culture-derived diploid plants are usually homozygous and are believed to be due to spontaneous doubling of chromosomes in either microsporocytes or callus cells during the culture process. However, heterozygous diploid regenerants may also arise from a) regeneration from cultured somatic cells, b) mutation occurring during or after a spontaneous doubling event, c) fusion of unlike haploid cells in chimeric callus, and d) regeneration from diploid microsporocytes resulting from aberrant meioses. This study was designed to elucidate the frequency and origin of diploid regenerants from rice anther culture. Regenerants were obtained from 11 F1 genotypes. Progeny testing detected heterozygosity in 7 out of 211 regenerants. Each of the heterozygous regenerants were from ‘Calrose 76’/waxy ‘M-101’, Half of the diploid regenerants from this cross were heterozygous. No heterozygous regenerants arose from the other 10 F1 genotypes. Progeny testing indicated that two of the heterozygous regenerants were as heterozygous as the F1 plants for three parental characters. The other five regenerants exhibited decreased levels of heterozygosity. One of the heterozygous regenerants exhibited evidence of mutation for a non-parental character. However, mutation is an unlikely cause of the observed high levels of parental-type heterozygosity. No evidence for the occurrence of chimeric callus was detected, making this an unlikely cause as well. The most likely origin of the observed partial heterozygosity is regeneration from diploid microspores, which could also produce plants exhibiting complete parental-type heterozygosity.  相似文献   

11.
The regeneration capacity of microspore-derived structures, with various morphological characteristics produced in anther cultures of maize (Zea mays L.) were studied in order to identify the morphotype resulting in the highest yield of spontaneous doubled haploid regenerants. Parallel to the morphological studies the ploidy level of microspore-derived structures and regenerants was analysed by flow cytometry. Neither the growth conditions of the anther donor plants nor the media used in the experiment had any effect on the frequency distribution of different morphotypes. The highest number of spontaneous doubled haploid plants was regenerated from white compact structures 2–3 mm in size, derived from the anthers of phytotron-grown donor plants.  相似文献   

12.
Three Quercus simple sequence repeat (SSR) markers were amplified by polymerase chain reaction (PCR) from nuclear DNA extracts of trees and in vitro-induced haploid embryos from anther cultures of Quercus suber L. These markers were sufficiently polymorphic to identify 10 of 12 trees located in two Spanish natural areas. The same loci have been analyzed in anther-derived haploid embryos showing the parental tree allele segregation. All the alleles were present in the haploid progeny. The presence of diverse alleles in embryos derived from the same anther demonstrated that they were induced on multiple microspores or pollen grains and they were not clonally propagated. Also, diploid cultures and mixtures of haploid-diploid tissues were obtained. The origin of such cultures, either somatic or gametic, was elucidated by SSR markers. All the embryos showed only one allele, corroborating a haploid origin. Allelic composition of the haploid progeny permitted parental identification among all analyzed trees.  相似文献   

13.

Key message

We induced a fdr1 mutation in maize which makes haploid plants male fertile due to first division restitution; the optimum sodium azide treatment on maize kernels has been identified.

Abstract

Sodium azide mutagenesis experiments were performed on haploid and diploid maize plants. Kernels with haploid embryos of maize inbred line B55 were induced by pollinating with RWS pollen. These kernels were treated with 0.2, 0.5, or 1.0 mM sodium azide solution for 2 h. The 0.5 mM solution was optimal for inducing numerous albino sectors on the treated plants without significant damage. Kernels of a maize hybrid, Oh43 × B55, were treated with sodium azide solutions at concentrations of 1.5, 2.0, 2.5, and 3.0 mM. Haploids were generated by pollinating RWS pollen. The highest rate of chlorophyll mutations in seedlings (15.3 % [13/85]) was recorded with the 2.5 mM concentration. A mutated haploid plant (PP1-50) with higher pollen fertility was isolated during the experiments. This haploid plant produced four kernels on the ear after selfing. These kernels were germinated and produced ears with full seed set after selfing. The haploid plants induced from PP1-50 diploids also exhibited high pollen fertility. In situ hybridization studies showed that meiocytes in PP1-50 haploid anthers underwent first division restitution at a rate of 48 % and produced equally divided dyads. We designated the genetic factor responsible for this high pollen fertility as fdr1. PP1-50 haploid ears exhibited high levels of sterility, as seen for regular haploids. Diploid PP1-50 meiocytes in the anther underwent normal meiosis, and all selfed progenies were normal diploids. We concluded that the fdr1 phenotype is only expressed in the anthers of haploid plants and not in the anthers of diploid plants.  相似文献   

14.
Androgenic haploids of the neem tree (Azadirachta indica A. Juss.) were produced by anther culture at the early- to late-uninucleate stage of pollen. Haploid formation occurred via callusing. The best medium for inducing callusing in the anther cultures was Murashige and Skoog's basal medium (MS) (9% sucrose) supplemented with 1 microM 2,4-D, 1 microM NAA and 5 microM BAP, while anther callus multiplied best on MS medium supplemented with 1 microM 2,4-D and 10 microM Kn. These calli differentiated shoots when transferred to a medium containing BAP; 5 microM BAP was optimum for young calli (75% cultures differentiated shoots), but older calli showed the best regeneration with 7.5 microM BAP. Shoots elongated at a lower concentration of BAP-0.5 microM. These shoots were multiplied by forced axillary branching and rooted in vitro. The plants were subsequently established in soil. Of the plants that regenerated from anther callus 60% were haploid, 20% were diploid and 20% were aneuploid.  相似文献   

15.
Flow cytometry was employed to determine the ploidy level of Vitis vinifera L. somatic embryo-derived plants obtained from anther culture. Only one among the 41 analysed plants (2.4%) presented somaclonal variation (tetraploidy); the other plants were diploid. No significant differences (P≤0.05) were detected between diploid and parental field plants. No haploid or aneuploid plants were observed. The nuclear DNA content of nine V. vinifera cultivars was also estimated using flow cytometry. A non-significant variation was found among the cultivars, with DNA content ranging from 1.17 pg/2C (cv. ‘Tinta Barroca’ and ‘Viosinho’) to 1.26 pg/2C (cv. ‘Cabernet Sauvignon’). These results and previous studies on other Vitis species suggest that Vitis genome is stable with regard to nuclear DNA content.  相似文献   

16.
Summary Treatment of diploid yeast cultures with the amino acid analogue, para-fluorophenylalanine (PFPA), at concentrations which caused inhibition of growth, resulted in up to 5 fold increases in the frequency of mitotic gene conversion at two different heteroallelic loci. With haploid yeast cultures, growth in PFPA increased the rate of forward mutation to canavanine resistance by at least 2 fold.Growth of diploids in PFPA prior to exposure to the deaminating agent nitrous acid, the cross-linking agent mitomycin C, the alkylating chemical ethylmethanesulphonate (EMS) and UV light resulted in significant changes in the potency of these diverse mutagens to induce intragenic recombination. For all four mutagens, increased frequencies of gene convertants/viable cell were observed in those cultures which had been exposed to the amino acid analogue prior to mutagen treatment. In haploid WT yeast cells, amino acid analogue incorporation resulted in an enhanced frequency of UV induced forward mutation to canavanine resistance whilst in a DNA repair deficient rad 6 mutant this interaction between UV and PFPA was abolished.The results have been interpreted on the basis of incorporation of the analogue into enzymes involved with DNA replication with a consequent loss of fidelity of such enzymes and increased errors in base incorporation.  相似文献   

17.
Production of haploid plants has been restricted to only a few ornamental species. In this paper an efficient anther culture protocol has been devised for production of haploid plants of Phlox drummondii, a garden ornamental. Anthers with microspores at early- to late-uninucleate stages were inoculated on MS (Murashige and Skoog, Physiol Plant 15:473–479, 1962) basal medium containing 9% sucrose, 10 μM 2,4-D + 5 μM BA in the dark for callus induction. The callus (~2 mm) was transferred to MS medium containing 3% sucrose + 10 μM BA + 5 μM NAA under a 16 h photoperiod for multiplication. Anther-derived callus showed the greatest shoot differentiation (60% with greater than 3 shoots per culture) at 13 weeks after culture initiation when maintained on MS medium supplemented with 3% sucrose and cytokinin (7.5 μM BA). At 68 weeks, only 4.6% of cultures differentiated with less than one shoot per callus. Anther-derived shoots rooted readily on MS medium containing 7.5 μM IAA. Of 60 plants that regenerated from anther callus, 50% were haploid, 30% diploid, and 20% aneuploid. Developed protocol could be useful for the haploid induction of outcrossing ornamental plants for production of their homozygous double haploids.  相似文献   

18.
In some cultures of the flagellate Chrysochromulina polylepis Manton et Parke, established from cells isolated from the massive bloom in Skagerrak and Kattegat in 1988, we observed, two motile cell types. They were termed authentic and alternate cells and differed with respect to scale morphology. To investigate whether or not the two cell forms were joined in a sexual life cycle, the relative DNA content per cell and relative size of cells of several clonal cultures of C. polylepis were determined by flow cytometry. Percentages of authentic and alternate cells in the cultures were estimated by transmission electron microscopy. Pure authentic cultures (α) contained cells with the lowest level of DNA and were termed haploid. Two pure alternate cultures (β) contained cells with double the DNA content of authentic cells and were termed diploid. Other pure alternate cultures contained haploid cells only, or both haploid and diploid cells. Three cell types were observed, each capable of vegetative propagation: authentic haploid, alternate haploid, and alternate diploid cells. Both the haploid and diploid alternate cells were larger than the haploid authentic cells. Cultures containing diploid cells appeared unstable: cell type ratio and ploidy ratio changed during the experiment where this cell type was present, particularly when grown in continuous light. In contrast, cultures with only haploid cells remained unchanged at all growth conditions tested. Light condition may influence cell type ratio and ploidy ratio. Our attempt to induce syngamy by mixing different authentic haploid clones did not result in mating. Assuming that the authentic and alternate cell types are of the same species, the life cycle of C. polylepis includes three flagellated scale-covered cell forms. Two of the cell types are haploid and may function as gametes, and the third is diploid, possibly being the result of syngamy.  相似文献   

19.
Protocols were developed for the generation of haploid or doubled haploid plants from developing microspores and ovules of Gentiana triflora. Plant regeneration was achieved using flower buds harvested at the mid to late uninucleate stages of microspore development and then treated at 4°C for 48 h prior to culture. Anthers and ovaries were cultured on modified Nitsch and Nitsch medium supplemented with a combination of naphthoxyacetic acid and benzylaminopurine. The explants either regenerated new plantlets directly or produced callus that regenerated into plantlets upon transfer to basal media supplemented with benzylaminopurine. Among seven genotypes of different ploidy levels used, 0–32.6% of cultured ovary pieces and 0–18.4% of cultured anthers regenerated plants, with all the genotypes responding either through ovary or anther culture. Flow cytometry confirmed that 98% of regenerated plants were either diploid or haploid. Diploid regenerants were shown to be gamete-derived by observing parental band loss using RAPD markers. Haploid plants were propagated on a proliferation medium and then treated with oryzalin for 4 weeks before transfer back to proliferation medium. Most of the resulting plants were diploids. Over 150 independently derived diploidised haploid plants have been deflasked. The protocol has been successfully used to regenerate plants from developing gametes of seven different diploid, triploid and tetraploid G. triflora genotypes.  相似文献   

20.
Summary Five haploid plants of wheat were used for anther culture. Embryos were formed and six plants were regenerated. Of these, two were haploid (n=3x=21) and two diploid (2n=6x=42). The two diploids derived from the anthers of the same haploid wheat plant gave seeds, but the fertility was reduced in one of them showing, abnormalities at meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号