首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Wyeomyia smithii mosquitoes distribute their eggs across available oviposition sites (water-holding pitcher plant leaves) of varying quality. I experimentally examined responses to three components of site quality: conspecific larval density, larval density of the pitcher plant midge,Metriocnemus knabi, and pitcher size. Responses to larval treatments were complex and apparently suboptimal. Although mosquito larval performance is better in leaves with fewer conspecific and more midge larvae, females did not lay more eggs in such pitchers. Instead, more eggs were laid in experimental pitchers containing either midge or mosquito larvae, but fewer eggs in pitchers with neither or both. More eggs were laid in larger pitchers, which tend to accumulate more resources and dry out less often. Therefore, although the oviposition decisions made were suboptimal, they were better than random.  相似文献   

2.
Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water‐filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.  相似文献   

3.
The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.  相似文献   

4.
    
There are few reports of mosquito larvae other than those of the species-specific mosquito Wyeomyia smithii (Coq.) in leaves of Sarracenia purpurea L. We investigate why this might be so in two sets of experiments. In the first set, we compare the percent survivorship of W. smithii, Aedes aegypti (L.) and Anopheles stephensi Liston larvae when reared in intact pitcher plant leaves to in vitro rearings and we found that the survivorship of the Aedes and Anopheles larvae was close to zero when reared in the intact pitcher plant leaves compared to 37% and 64%, respectively, when reared in fish-food medium and 78% and 82%, respectively, when reared in pitcher-plant liquid. Wyeomyia smithii larvae had high percent survivorships under all three rearing conditions. In the second set of in vitro experiments, we compared the percent survivorship of W. smithii and Ae. aegypti larvae when reared in pitcher-plant liquid in the presence and absence of the larvae of the pitcher-plant midge, Metriocnemus knabi (Coq.) and found that the percent survivorship for W. smithii was high (90%) whether M. knabi larvae were present or absent. We also found that Ae. aegypti larval survivorship was 82% when M. knabi larvae were absent and less then 2% when present in the culture plates. Based on these findings, we suggest that M. knabi larvae prevent non-Wyeomyia mosquito taxa from exploiting the resources of S. purpurea leaves, thereby maintaining it as an exclusive mosquito niche for W. smithii. This is confirmed by visual observation of M. knabi attacking and devouring Aedes and Anopheles larvae, while at the same time leaving W. smithii larvae unharmed. Possibly the long setae of the W. smithii larva may prevent access to its body wall by the mandibles of the M. knabi larva. Application of these findings to other mosquito-plant associations is suggested.  相似文献   

5.
Colonisation of pitcher plant leaves at several spatial scales   总被引:1,自引:0,他引:1  
Abstract.  1. The effect of meso-scale (zone within bog and local plant density) and fine-scale (leaf length and resource availability) factors on the colonisation of pitcher plant leaves by arthropods was examined in an eastern Canadian bog.
2. In spring, the abundances of three arthropods, the mosquito Wyeomyia smithii , the midge Metriocnemus knabi , and the mite Sarraceniopus gibsoni , were determined for plots with low, moderate, and high densities of pitcher plants. All overwintering inhabitants were then removed from the plots. Newly opening leaves were colonised from outside the plots, and arthropod abundances were assessed again in autumn.
3. Pitcher plant fauna varied in their response to the meso-scale factors. In autumn (soon after colonisation), midges were more abundant in areas with high densities of pitcher plants. The relationship between mosquito abundance and plant density, and the variation in abundance among zones within the bog in the spring, were probably due to overwintering mortality.
4. All taxa responded to the fine-scale factors, leaf length, and capture rate, in the autumn, but the strength of the responses frequently depended on a meso-scale factor (plant density), in which responses were usually strongest where plants were sparse. Thus, the interaction between meso- and fine-scale processes needs to be considered when interpreting patterns of species abundance within arthropod assemblages in pitcher plant leaves.  相似文献   

6.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

7.
To assess the effects of increased nutrient availability on aquatic oligochaetes in raised bogs, species assemblages were compared within and between fairly pristine raised bogs in Estonia and raised bog remnants in The Netherlands. Within the pristine bog landscape a distinct pattern in the species assemblage is present. In the most nutrient-poor water bodies, in the ombrotrophic raised bog, only the fragmenting, almost never mature, acid-tolerant species Cognettia sphagnetorum is present. In pristine Estonian raised bogs Nais variabilis, Lumbriculus variegatus and sexually reproducing species are limited to more minerotrophic water bodies, which have a higher decomposition rate of dead organic matter and, consequently, higher nutrient availability. With ten species the lagg zone is the most species-rich part of a pristine raised bog landscape. Most of these lagg zone species are not present in Dutch bog remnants as this part of the bog landscape has long been cultivated. Nais variabilis occurs in the Dutch bog remnants much more frequently than in Estonian bogs, whereas the frequency of C. sphagnetorum and L. variegatus is similar between both countries. These three species respond differently to the increased nutrient availability in The Netherlands, which could be linked to differences in their diets. In contrast to pristine bog pools, N. variabilis in Dutch raised bog remnants is present in water bodies not influenced by minerotrophic water. In Dutch raised bog remnants the occurrence of oligochaetes is not limited anymore by nutrient availability, due to the higher atmospheric nitrogen and sulphur loads in The Netherlands. Overall, it can be concluded that the degradation of Dutch raised bogs has resulted in the loss of both the nutrient-poor parts of the landscape and the special lagg conditions.  相似文献   

8.
Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (~1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.  相似文献   

9.
Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.  相似文献   

10.
Aim The study of geographical discontinuities in the distribution of genetic variability in natural populations is a central topic in both evolutionary and conservation research. In this study, we aimed to analyse (1) the factors associated with genetic diversity at the landscape spatial scale in the highly specialized grasshopper Mioscirtus wagneri and (2) to identify the relative contribution of alternative factors to the observed patterns of genetic structure in this species. Location La Mancha region, Central Spain. Methods We sampled 28 populations of the grasshopper M. wagneri and genotyped 648 individuals at seven microsatellite loci. We employed a causal modelling approach to identify the most influential variables associated with genetic differentiation within a multiple hypothesis‐testing framework. Results We found that genetic diversity differs among populations located in different river basins and decreases with population isolation. Causal modelling analyses showed variability in the relative influence of the studied landscape features across different spatial scales. When a highly isolated population is considered, the analyses suggested that geographical distance is the only factor explaining the genetic differentiation between populations. When that population is excluded, the causal modelling analysis revealed that elevation and river basins are also relevant factors contributing to explaining genetic differentiation between the studied populations. Main conclusions These results indicate that the spatial scale considered and the inclusion of outlier populations may have important consequences on the inferred contribution of alternative landscape factors on the patterns of genetic differentiation even when all populations are expected to similarly respond to landscape structure. Thus, a multiscale perspective should also be incorporated into the landscape genetics framework to avoid biased conclusions derived from the spatial scale analysed and/or the geographical distribution of the studied populations.  相似文献   

11.
As a component of the inquiline community of the purple pitcher plant (Sarracenia purpurea), the pitcher plant midge Metriocneus knabi has been the subject of various ecological studies. However, very little is known about its characteristics beyond the larval stage, in particular the dispersal ability of adults. This study presents new molecular tools developed for testing of evolutionary and ecological questions in natural populations of this species. We describe a set of 12 microsatellite loci specific to M. knabi that are sufficiently polymorphic to provide insight into population genetic structure and dispersal patterns.  相似文献   

12.
Biogeographic barriers have long been implicated as drivers of biological diversification, but how these barriers influence co‐occurring taxa can vary depending on factors intrinsic to the organism and in their relationships with other species. Due to the interdependence among taxa, ecological communities present a compelling opportunity to explore how interactions among species may lead to a shared response to historical events. Here we collect single nucleotide polymorphism data from five commensal arthropods associated with the Sarracenia alata carnivorous pitcher plant, and test for codiversification across the Mississippi River, a major biogeographic barrier in the southeastern United States. Population genetic structure in three of the ecologically dependent arthropods mirrors that of the host pitcher plant, with divergence time estimates suggesting two of the species (the pitcher plant moth Exyra semicrocea and a flesh fly Sarcophaga sarraceniae) dispersed synchronously across this barrier along with the pitcher plant. Patterns in population size and genetic diversity suggest the plant and ecologically dependent arthropods dispersed from east to west across the Mississippi River. In contrast, species less dependent on the plant ecologically show discordant phylogeographic patterns. This study demonstrates that ecological relationships may be an important predictor of codiversification, and supports recent suggestions that organismal trait data should be prominently featured in comparative phylogeographic investigations.  相似文献   

13.
Reverse latitudinal trends in species richness of pitcher-plant food webs   总被引:3,自引:0,他引:3  
Latitudinal patterns in species richness have been well documented for guilds and individual trophic groups, but comparable patterns for entire, multitrophic communities have not been described. We studied the entire food web that inhabits the water‐filled leaves of the pitcher plant Sarracenia purpurea across North America at two spatial scales: among sites and among leaves within sites. Contrary to the expectation, total species richness at both scales increased with latitude, because of increasing species richness at the lower trophic levels. This latitudinal pattern may be driven by a top‐down effect. The abundance of the mosquito Wyeomyia smithii, a ubiquitous top predator in this system, decreases from south to north and may permit greater species richness of prey trophic levels at higher latitudes.  相似文献   

14.
Carnivorous pitcher plants host diverse microbial communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary processes that influence the spatial diversity of microbial communities. Using next-generation sequencing of environmental samples, we surveyed microbial communities from 29 pitcher plants (Sarracenia alata) and compare community composition with plant genetic diversity in order to explore the influence of historical processes on the population structure of each lineage. Analyses reveal that there is a core S. alata microbiome, and that it is similar in composition to animal gut microfaunas. The spatial structure of community composition in S. alata (phyllogeography) is congruent at the deepest level with the dominant features of the landscape, including the Mississippi river and the discrete habitat boundaries that the plants occupy. Intriguingly, the microbial community structure reflects the phylogeographic structure of the host plant, suggesting that the phylogenetic structure of bacterial communities and population genetic structure of their host plant are influenced by similar historical processes.  相似文献   

15.
Relationships between the distribution and specific leaf area (SLA: leaf area per unit dry mass) of six heath (Ericaceae) species were investigated along an environmental gradient between peat bogs and conifer forest in British Columbia, Canada. I asked whether patterns in SLA could help to identify the processes shaping plant distributional patterns. Specifically, I assessed whether (i) species’ distributions across the environmental gradient are correlated with SLA (ii) relationships between plant distributional patterns and SLA are similar among bogs with different shrub species (iii) intraspecific patterns in SLA parallel interspecific relationships between distributions and SLA, and (iv) intraspecific patterns are environmentally determined. Results showed that distributional patterns were often correlated with SLA; species with lower SLA were more abundant towards the centre of bogs, while species with higher SLA were more abundant in forest. Intraspecific patterns in SLA paralleled distributional patterns across the gradient; individuals located towards the centre of bogs had lower SLA than those growing in forest. A transplantation experiment showed that plants typically altered their SLA according to local environmental conditions. However, one bog showed no relationship between species’ distributions and SLA. This bog lacked the two species with lowest SLA, which typically occurred at the centre of other bogs. In their absence, species with higher SLA that typically occurred in forest increased in abundance towards the centre of the bog, where they obtained lower values of SLA. Therefore, while distributional patterns were often closely associated with SLA, plasticity in SLA was associated with increased breadth of species’ distributions across the gradient. Overall results indicate SLA may serve as a useful proxy for a range of life history traits to help elucidate the processes structuring plant communities.  相似文献   

16.
Paleoecological studies indicate that peatland ecosystems may exhibit bistability. This would mean that these systems are resilient to gradual changes in climate, until environmental thresholds are passed. Then, ecosystem stability is lost and rapid shifts in surface and vegetation structure at landscape scale occur. Another remarkable feature is the commonly observed self-organized spatial vegetation patterning, such as string-flark and maze patterns. Bistability and spatial self-organization may be mechanistically linked, the crucial mechanism being scale-dependent (locally positive and longer-range negative) feedback between vegetation and the peatland environment. Focusing on bogs, a previous model study shows that nutrient accumulation by vascular plants can induce such scale-dependent feedback driving pattern formation. However, stability of bog microforms such as hummocks and hollows has been attributed to different local interactions between Sphagnum, vascular plants, and the bog environment. Here we analyze both local and longer-range interactions in bogs to investigate the possible contribution of these different interactions to vegetation patterning and stability. This is done by a literature review, and subsequently these findings are incorporated in the original model. When Sphagnum and encompassing local interactions are included in this model, the boundaries between vegetation types become sharper and also the parameter region of bistability drastically increases. These results imply that vegetation patterning and stability of bogs could be synergistically governed by local and longer-range interactions. Studying the relative effect of these interactions is therefore suggested to be an important component of future predictions on the response of peatland ecosystems to climatic changes.  相似文献   

17.
JL Richardson 《Molecular ecology》2012,21(18):4437-4451
The physical and environmental attributes of landscapes often shape patterns of population connectivity by influencing dispersal and gene flow. Landscape effects on movement are typically evaluated for single species. However, inferences from multiple species are required for multi‐species management strategies increasingly being applied in conservation. In this study, I compared the spatial genetic patterns of two amphibian species across the northeastern United States and estimated the influence of specific landscape features on the observed genetic structure. The spotted salamander (Ambystoma maculatum) and wood frog (Rana sylvatica) share many ecological attributes related to habitat use, phenology and site fidelity. However, I hypothesized that important differences in their movement patterns and life history would create distinct genetic patterns for each species. Using 14 microsatellite loci, I tested for differences in the level of genetic differentiation between the two species across 22 breeding ponds. The effects of eight landscape features were also estimated by evaluating 32 landscape resistance models. Spotted salamanders exhibited significantly higher genetic differentiation than wood frogs. Different landscape features were also identified as potential drivers of the genetic patterns in each species, with little overlap in model support between species. Collectively, these results provide strong evidence that these two amphibian species interact with the landscape in measurably different ways. The distinct genetic patterns observed are consistent with key differences in movement ability and life history between A. maculatum and R. sylvatica. These results highlight the importance of considering more than one species when assessing the impacts of the landscape matrix on population connectivity, even for ecologically similar species within the same habitats.  相似文献   

18.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

19.
1. We performed spatial genetic analyses, incorporating landscape genetic methods using microsatellite data and phylogeographic analyses using mtDNA data, to identify the principal factors that determine population heterogeneity of the tropical freshwater fish, Mogurnda mogurnda, in the Daly River, northern Australia. We tested the individual and interactive effects of several environmental variables on spatial genetic patterns, including metrics relating to connectivity (i.e. stream distance, maximum stream gradient and elevation), habitat size (i.e. mean annual discharge) and a categorical variable relating to population history, as determined by mtDNA phylogeographic analyses. The Daly River is geomorphologically and hydrologically complex, and M. mogurnda has life history traits that limit its dispersal potential at river basin scales. Thus, we predicted that variables relating to connectivity would be the most important landscape factors driving population structure of the species. 2. Tree‐based phylogeographic analyses indicated four divergent mtDNA lineages within M. mogurnda in the Daly River, although three of the lineages were sympatric in various combinations and did not correspond with microsatellite groups identified by assignment tests. The allopatric mtDNA lineage detected in the uppermost part of the catchment was also identified as being highly differentiated by the microsatellite data, strongly suggesting that it may be a cryptic species. This site was therefore excluded from subsequent landscape genetic analyses. 3. Analyses of Molecular Variance indicated that M. mogurnda has a hierarchical population structure in the Daly River, thus supporting theoretical expectations that hierarchically arranged river habitats in dendritic systems impose hierarchal population structures on lotic species. 4. All landscape genetic analyses rejected stream distance, and supported stream gradient, as the major determinant of spatial genetic variation in M. mogurnda in the Daly River. Support for elevation as a determinant of spatial genetic patterns differed among the landscape genetic methods. Several of the landscape genetic methods also indicate that population history, including secondary contact between divergent and formerly allopatric genetic lineages, has a strong influence on spatial genetic patterns within M. mogurnda in the Daly River. 5. This study demonstrates the need to consider multiple environmental factors, especially factors relating to connectivity, and their interactions in spatial genetic analysis, rather than just geographic distance. Importantly, it demonstrates the need to account for population history and evolutionary divergences in landscape genetic analyses.  相似文献   

20.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号