首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The lipid activators of protein kinase C, phosphatidylserine and diacylglycerol, induce a reversible conformational change that exposes the auto-inhibitory pseudosubstrate domain of the enzyme. The pseudosubstrate domain of beta-II protein kinase C is cleaved after the first residue, arginine 19, by the endoproteinase Arg-C only when the kinase is bound to the activating lipid phosphatidylserine. Exposure of this residue is markedly enhanced by diacylglycerol. In contrast, the pseudosubstrate domain is not cleaved in the absence of lipids, when protein kinase C is bound to non-activating acidic lipids, when the kinase has autophosphorylated on the amino terminus, or after dilution of the activating lipids. This work reveals specificity in the interaction of protein kinase C with phosphatidylserine since only this phospholipid causes the specific conformational change detected in the regulatory domain of the enzyme, and demonstrates that allosteric regulators expose the intramolecular auto-inhibitory domain of a kinase.  相似文献   

2.
A C Newton  D E Koshland 《Biochemistry》1990,29(28):6656-6661
Protein kinase C substrate phosphorylation and autophosphorylation are differentially modulated by the phosphatidylserine concentration in model membranes. Both substrate phosphorylation and auto-phosphorylation display a cooperative dependence on phosphatidylserine in sonicated vesicles composed of diacylglycerol and either phosphatidylcholine or a mixture of cell lipids (cholesterol, sphingomyelin, phosphatidylethanolamine, and phosphatidylcholine). However, the concentration of phosphatidylserine required to support phosphorylation varies with individual substrates. In general, autophosphorylation is favored at intermediate phosphatidylserine concentrations, while substrate phosphorylation dominates at high phosphatidylserine concentrations. These different phosphatidylserine dependencies may reflect different affinities of particular substrates for negatively charged membranes. Increasing the negative surface charge of sonicated vesicles increases the rate of substrate phosphorylation. In contrast to the modulation exerted by phosphatidylserine, diacylglycerol activates protein kinase C equally toward substrate phosphorylation and autophosphorylation. These results indicate that both diacylglycerol and phosphatidylserine regulate protein kinase C activity in the membrane: diacylglycerol turns the enzyme on, while phosphatidylserine affects the specificity toward different substrates.  相似文献   

3.
Johnson JE  Giorgione J  Newton AC 《Biochemistry》2000,39(37):11360-11369
Protein kinase C is specifically activated by binding two membrane lipids: the second messenger, diacylglycerol, and the amino phospholipid, phosphatidylserine. This binding provides the energy to release an autoinhibitory pseudosubstrate from the active site. Interaction with these lipids recruits the enzyme to the membrane by engaging two membrane-targeting modules: the C1 domain (present as a tandem repeat in most protein kinase Cs) and the C2 domain. Here we dissect the contribution of each domain in recruiting protein kinase C betaII to membranes. Binding analyses of recombinant domains reveal that the C2 domain binds anionic lipids in a Ca(2+)-dependent, but diacylglycerol-independent, manner, with little selectivity for phospholipid headgroup beyond the requirement for negative charge. The C1B domain binds membranes in a diacylglycerol/phorbol ester-dependent, but Ca(2+)-independent manner. Like the C2 domain, the C1B domain preferentially binds anionic lipids. However, in striking contrast to the C2 domain, the C1B domain binds phosphatidylserine with an order of magnitude higher affinity than other anionic lipids. This preference for phosphatidylserine is, like that of the full-length protein, stereoselective for sn-1, 2-phosphatidyl-L-serine. Quantitative analysis of binding constants of individual domains and that of full-length protein reveals that the full-length protein binds membranes with lower affinity than expected based on the binding affinity of isolated domains. In addition to entropic and steric considerations, the difference in binding energy may reflect the energy required to expel the pseudosubstrate from the substrate binding cavity. This study establishes that each module is an independent membrane-targeting module with each, independently of the other, containing determinants for membrane recognition. The presence of each of these modules, separately, in a number of other signaling proteins epitomizes the use of these modules as discreet membrane targets.  相似文献   

4.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

5.
Complex formation between horse heart cytochrome c (cyt c) and bovine cytochrome c oxidase (cco) incorporated into a supported planar egg phosphatidylcholine membrane containing varying amounts of cardiolipin (CL) (0-20 mol%) has been studied under low (10 mM) and medium (160 mM) ionic strength conditions by surface plasmon resonance (SPR) spectroscopy. Both specific and nonspecific modes of cyt c binding are observed. The dissociation constant of the specific interaction between cyt c and cco increases from approximately 6.5 microM at low ionic strength to 18 microM at medium ionic strength, whereas the final saturation level of bound protein is independent of salt concentration and corresponds to approximately 53% of the total cco molecules present in the membrane. This suggests a 1:1 binding stoichiometry between the two proteins. The nonspecific binding component is governed by electrostatic interactions between cyt c and the membrane lipids and results in a partially ionic strength-reversible protein-membrane association. Thus, hydrophobic interactions between cyt c and the membrane, which are the predominant mode of binding in the absence of cco, are greatly suppressed. Both the amount of nonspecifically bound protein and the binding affinity can be varied over a broad range by changing the ionic strength and the extent of CL incorporation into the membrane. Under conditions approximating the physiological state in the mitochondrion (i.e., 20 mol% CL and medium ionic strength), 1-1.5 cyt c molecules are bound to the lipid phase per molecule of cco, with a dissociation constant of 0.1 microM. The possible physiological significance of these observations is discussed.  相似文献   

6.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   

7.
Equilibrium binding studies on the interaction between the anthracycline daunomycin and plasma membrane fractions from daunomycin-sensitive and -resistant murine leukemia P-388 cells are presented. Drug binding constants (KS) are 15,000 and 9800 M-1 for plasma membranes from drug-sensitive and drug-resistant cells, respectively. Drug binding to the membranes is not affected by either (i) thermal denaturation of membrane proteins or (ii) proteolytic treatment with trypsin, thus suggesting that the protein components of the membranes do not have a major role in determining the observed drug binding. Also, fluorescence resonance energy transfer between tryptophan and daunomycin in the membranes indicates that interaction of protein components with the drug should not be responsible for the observed differences in drug binding exhibited by plasma membranes from drug-sensitive and -resistant cells. Plasma membranes from drug-sensitive cells contain more phosphatidylserine and slightly less cholesterol than membranes from drug-resistant cells. Differences in the content of the acidic phospholipid between the two plasma membranes seem to produce a different ionic environment at membrane surface domains, as indicated by titration of a membrane-incorporated, pH-sensitive fluorescence probe. The possible role of membrane lipids in modulating drug binding to the membranes was tested in equilibrium binding studies using model lipid vesicles made from phosphatidylcholine, phosphatidylserine, and cholesterol in different proportions. The presence of phosphatidylserine greatly increases both the affinity and the stoichiometry of daunomycin binding to model lipid vesicles. The similarity between the effects of phosphatidylserine and other negatively charged compounds such as dicetyl phosphate, cardiolipin, or phosphatidic acid suggests that electrostatic interactions are important in the observed binding of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
(1) The interaction of apocytochrome c with different molecular species of phosphatidylserine was studied using monolayers at constant surface area or constant surface pressure. The protein inserted readily into dioleoylphosphatidylserine monolayers up to a limiting pressure of 50 mN/m, whereas the interaction decreased with increasing molecular packing of the phosphatidylserine species, indicating the importance of the hydrophobic core of the lipid layer for the interaction. (2) The high affinity of apocytochrome c for dioleoylphosphatidylserine is indicated by the low Kd of 0.017 microM. There is little or no interaction with phosphatidylcholines. The importance of charge interactions is underlined by its ionic strength and pH dependency. (3) Experiments using 14C-labelled apocytochrome c indicate that cholesterol can enhance the protein binding. (4) It was demonstrated that apocytochrome c monomers penetrate the monolayer whereas oligomers can be formed in an adsorbed layer and washed off without changing the surface pressure. Preincubation of apocytochrome c in 3 M guanidine, to obtain the monomeric form, was essential to measure the full effect of interfacial interaction. (5) The molecular area of apocytochrome c changed from 1200-1300 A2/molecule in the absence of lipid to 700-900 A2/molecule after penetration of dioleoylphosphatidylserine monolayers. (6) Apocytochrome c-dioleoylphosphatidylserine interactions are only possible when the monolayer is approached from the subphase. It is concluded that the charge interactions are required for binding and penetration of the protein.  相似文献   

9.
The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally, it is found that the binding capacity for the native protein is increased at low ionic strength to a value that is greater than that for complete surface coverage, and that corresponds more closely to neutralization of the effective charge (determined from the ionic strength dependence), rather than of the total net charge, on the protein. Electron spin resonance experiments with spin-labeled lipids indicate that this different mode of binding arises from a penetration or disturbance of the bilayer surface by the protein that may alleviate the effects of in-plane interactions under conditions of strong binding.  相似文献   

10.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4661-4667
The basis for the apparent cooperativity in the activation of protein kinase C by phosphatidylserine has been addressed using proteolytic sensitivity, resonance energy transfer, and enzymatic activity. We show that binding of protein kinase C to detergent-lipid mixed micelles and model membranes is cooperatively regulated by phosphatidylserine. The sigmoidal dependence on phosphatidylserine for binding is indistinguishable from that observed for the activation of the kinase by this lipid [Newton & Koshland (1989) J. Biol. Chem. 264, 14909-14915]. Thus, protein kinase C activity is linearly related to the amount of phosphatidylserine bound. Furthermore, under conditions where protein kinase C is bound to micelles at all lipid concentrations, activation of the enzyme continues to display a sigmoidal dependence on the phosphatidylserine content of the micelle. This indicates that the apparent cooperativity in binding does not arise because protein kinase C senses a higher concentration of phosphatidylserine once recruited to the micelle. Our results reveal that the affinity of protein kinase C for phosphatidylserine increases as more of this lipid binds, supporting the hypothesis that a domain of phosphatidylserine is cooperatively sequestered around the enzyme.  相似文献   

11.
R B Cornell 《Biochemistry》1991,30(24):5873-5880
The activity of phosphocholine cytidylyltransferase (CT), the regulatory enzyme in phosphatidylcholine synthesis, is dependent on lipids. The enzyme, obtained from rat liver cytosol, was purified in the presence of Triton X-100 [Weinhold et al. (1986) J. Biol. Chem. 261, 5104]. The ability of lipids to activate CT when added as Triton mixed micelles was limited to anionic lipids. The relative effectiveness of the lipids tested suggested a dependence on the negative surface charge density of the micelles. The mole percent lipid in the Triton mixed micelle required for activation decreased as the net charge of the lipid varied from 0 to -2. Evidence for the physical association of CT with micelles and vesicles containing phosphatidylglycerol was obtained by gel filtration. The activation by micelles containing PG was influenced by the ionic strength of the medium, with a higher surface charge density required for activation at higher ionic strength. The micelle surface potential required for full activation of CT was calculated to be -43 mV. A specificity toward the structure of the polar group of the acidic lipids was not apparent. CT was activated by neutral lipids such as diacylglycerol or oleyl alcohol when included in an egg PC membrane, but the activities were reduced by dilution with as little as 10 mol % Triton. Thus Triton mixed micelles are not suitable for studying the activation of CT by these neutral lipid activators. We conclude that one way that lipid composition can control CT-membrane binding and activity is by changing the surface potential of the membrane. Other distinct mechanisms involved in the activation by neutral lipids are discussed.  相似文献   

12.
13.
Protein kinase C from small intestine epithelial cells   总被引:1,自引:0,他引:1  
Protein kinase C activity has been identified in cytosolic and membrane fractions from rat and rabbit small intestine epithelial cells. The cytosolic fraction comprised about the 75% of total activity. Protein kinase C activity was resolved from other protein kinase activities by ion exchange chromatography. Phosphatidylserine or phosphatidylinositol were required for protein kinase C to be active. In addition, the activity was enhanced by the presence of a diacylglycerol. Diolein and dimyristin were the most effective (13-14 fold activation). In the presence of phosphatidylserine and diolein, the Ka for activation by Ca2+ was 10(-7)M. The phorbol ester TPA substituted for diacylglycerol in activating protein kinase C. Brush border and basolateral membranes contained protein kinase C activity, although the specific activity of the basal lateral membranes was four-fold higher than the specific activity of the brush border membranes. The presence of PKC in small intestine epithelial cells might have important implications in the Ca2+ mediated control of ionic transport in this tissue.  相似文献   

14.
Transmissible spongiform encephalopathies are neurodegenerative diseases characterized by the accumulation of an abnormal isoform of the prion protein PrPSc. Its fragment 106-126 has been reported to maintain most of the pathological features of PrPSc, and a role in neurodegeneration has been proposed based on the modulation of membrane properties and channel formation. The ability of PrPSc to modulate membranes and/or form channels in membranes has not been clearly demonstrated; however, if these processes are important, peptide-membrane interactions would be a key feature in the toxicity of PrPSc. In this work, the interaction of PrP(106-126) with model membranes comprising typical lipid identities, as well as more specialized lipids such as phosphatidylserine and GM1 ganglioside, was examined using surface plasmon resonance and fluorescence methodologies. This comprehensive study examines different parameters relevant to characterization of peptide-membrane interactions, including membrane charge, viscosity, lipid composition, pH, and ionic strength. We report that PrP(106-126) has a low affinity for lipid membranes under physiological conditions without evidence of membrane disturbances. Membrane insertion and leakage occur only under conditions in which strong electrostatic interactions operate. These results support the hypothesis that the physiological prion protein PrPC mediates PrP(106-126) toxic effects in neuronal cells.  相似文献   

15.
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule.  相似文献   

16.
Inhibition of the insulin receptor tyrosine kinase by sphingosine.   总被引:1,自引:0,他引:1  
R S Arnold  A C Newton 《Biochemistry》1991,30(31):7747-7754
Sphingosine inhibits autophosphorylation of the insulin receptor tyrosine kinase in vitro and in situ. This lysosphingolipid has been shown previously to inhibit the Ca2+/lipid-dependent protein kinase C. Here we show that insulin-dependent autophosphorylation of partially purified insulin receptor is half-maximally inhibited by 145 microM sphingosine (9 mol %) in Triton X-100 micelles. Half-maximal inhibition of protein kinase C autophosphorylation occurs with 60 microM sphingosine (3.4 mol %) in Triton X-100 mixed micelles containing phosphatidylserine and diacylglycerol. Sphingomyelin does not inhibit significantly the insulin receptor, suggesting that, as with protein kinase C, the free amino group may be essential for inhibition. Similar to the effects observed for protein kinase C, inhibition of the insulin receptor kinase by sphingosine is reduced in the presence of other lipids. However, the reduction displays a marked dependence on the lipid species: phosphatidylserine, but not a mixture of lipids compositionally similar to the cell membrane, markedly reduces the potency of sphingosine inhibition. The inhibition occurs at the level of the protein/membrane interaction: a soluble form of the insulin receptor comprising the cytoplasmic kinase domain is resistant to sphingosine inhibition. Lastly, sphingosine inhibits the insulin-stimulated rate of tyrosine phosphorylation of the insulin receptor in NIH 3T3 cells expressing the human insulin receptor. These results suggest that sphingosine alters membrane function independently of protein kinase C.  相似文献   

17.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

18.
19.
Cytochrome c was permitted to react with several lipid monolayers in which surface pressure, lipid charge and unsaturation were varied. Cytochrome c interaction with the films caused increased surface pressures, and the magnitude and rate of surface pressure change were compared under a variety of experimental conditions. Large surface pressure changes were associated with more expanded films, whereas greater rates of surface pressure change were associated with favorable charge interaction between cytochrome c and the films. Under the most favorable conditions, rates of surface pressure change were limited principally by protein diffusion to the interface. From these data, it is suggested that unsaturation in lipids of biological membranes may help stabilise non-polar protein-lipid interactions, whereas charge interaction may facilitate and direct initial binding of protein to membranes.  相似文献   

20.
Interactions of certain naturally occurring, amphiphilic polypeptides with membranes were investigated. Mastoparan (wasp venom toxin), melittin (bee venom toxin), cardiotoxin (cobra venom toxin), and polymyxin B (antibacterial antibiotic) inhibited protein kinase C stimulated by phosphatidylserine bilayer or arachidonate monomer and blocked binding of [3H] phorbol 12,13-dibutyrate to protein kinase C in the presence of phosphatidylserine bilayer, with IC50 values (concentrations causing 50% inhibition) of 1-8 microM. Mastoparan and polymyxin B were much less inhibitory (IC50, 10-20 microM), whereas melittin and cardiotoxin were similarly inhibitory (IC50, 1-4 microM), when protein kinase C was activated instead by synaptosomal membrane. Kinetic analysis indicate that mastoparan inhibited protein kinase C, assayed using phosphatidylserine or synaptosomal membrane as the phospholipid cofactor, competitively with the phospholipid cofactor, in a mixed manner with CaCl2 or diacylglycerol, noncompetitively with histone, and uncompetitively with ATP, with apparent Ki values of 1.6-18.7 microM. Inhibition of Na,K-ATPase in the membrane by these polypeptides had relative potencies different from those for their inhibition of protein kinase C activated by the same membrane preparation; mastoparan and melittin inhibited the two activities with comparable potencies, but polymyxin B and cardiotoxin were far less effective in inhibiting Na,K-ATPase. The same relative inhibitory potencies of the polypeptides (melittin greater than mastoparan greater than polymyxin B) for inhibition of Na,K-ATPase were also noted for their inhibition of Ca2+/calmodulin-dependent protein kinase II, 86Rb uptake (Na+ pump) by HL60 cells and the phorbol ester-induced differentiation of the leukemia cells. These findings were consistent with discrete interactions of the polypeptides with functionally distinct sites on the membrane, leading to differential inhibition of biological activities associated with the membrane. Actions of certain polypeptides appeared to be more specific compared to those of lipid second messengers such as lyso-phosphatidylcholine and sphingosine, and the antineoplastic ether lipid analogs such as 1-O-octadecyl-2-methyl-rac-glycero-3-ophosphocholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号