首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

2.
A monospecific inhibitory antibody directed to phospholipase C (phosphoinositidase C) blocked the antiviral effect of human interferons alpha and beta when tested on human quiescent fibroblasts challenged with the vesicular stomatitis virus. This action was due to specific inhibition of polyphosphoinositide hydrolysis because (a) the F(ab)2 fragment of the antibody molecule was also inhibitory; (b) excess antibodies directed to phospholipase A2 and to a phosphatidylcholine-preferring phospholipase C did not have any inhibitory effect, and (c) the combination of 12-O-tetradecanoylphorbol-acetate and calcium ionophore A23187 had an interferon-like antiviral effect which was not influenced by the inhibitory anti-phospholipase C antibodies. To avoid an interferon-like effect due to induction of interferon by second messengers, Vero cells, which lack interferon biosynthesis, were also used. Liposomes containing inositol 1,4,5-triphosphate and 1-oleoyl-2-acetyl-rac-glycerol protected Vero cells against the infection with the vesicular stomatitis virus. These results taken together show that phosphoinositide-derived second messengers are involved in triggering the antiviral effect of interferons alpha and beta.  相似文献   

3.
Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity.  相似文献   

4.
Fluoride elicited in liver macrophages a release of arachidonic acid and prostaglandins but not formation of inositol phosphates or superoxide. The effects of fluoride required extracellular calcium and were inhibited by staurosporine and by phorbol ester treatment of the cells. Furthermore, fluoride led to a translocation of protein kinase C from the cytosol to membranes. This indicates that the calcium-dependent protein kinase C is involved in the action of fluoride. Cholera toxin decreased the zymosan-induced release of arachidonic acid and prostaglandins but not of inositol phosphates or superoxide. Pertussis toxin ADP-ribosylated a 41,000 molecular weight membrane protein; enhanced specifically the zymosan-induced formation of prostaglandin(PG)E2 but did not affect the zymosan-induced release of arachidonic acid, PGD2, inositol phosphates or superoxide. These data suggest that activation of phospholipase (PL)A2, phosphoinositide (PI)-specific PLC and NADPH oxidase in liver macrophages is most probably not mediated by activation of guanine nucleotide binding (G)-proteins coupled directly to these enzymes.  相似文献   

5.
Effects of L-histidine and related compounds on protein synthesiswere studied in cultured L6 myotubes. L-Histidine specifically stimulated protein synthesis, whereas D-histidine, histamine, L-arginine and L-lysine did not. Inhibitors of phospholipase A2, phospholipase C and cyclooxygenase intercepted the stimulatory action of L-histidine on protein synthesis, while inhibitors of protein kinase C and 5-lipoxygenase did not. These results suggest an involvement of phospholipase A2 and cyclooxygenase in the stimulatory action of L-histidine on protein synthesis in L6 myotubes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Three phospholipases A2 purified from cobra venoms and two presynaptically acting neurotoxins that exhibit phospholipase A2 activity were subjected to tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Associated with the modification of an increasing number of Trp residues were marked decreases in enzymatic activity and lethality, whereas antigenicity remained unchanged. The degree of exposure of tryptophanyl groups as determined by acrylamide quenching was consistent with the relative reactivity toward 2-hydroxy-5-nitrobenzyl bromide, except for Hemachatushaemachatus phospholipase A2, which showed unusually high reactivity due to its characteristic dimeric conformation. Difference spectra of Trp-modified derivatives differed from those of their native enzymes by the presence of a new positive perturbation between 350 and 500 nm, with a maximum at 415 nm. Scatchard plots revealed only one type of binding site for Ca2+, and the binding abilities of the modified enzymes were not impaired. At pH 8.0, all native enzymes enhanced the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, and the emission intensity of the ANS-enzyme complex increased or decreased in parallel with increasing concentration of Ca2+ for the respective enzyme. The Trp-modified derivatives did not enhance the emission intensity of ANS at all either in the presence or absence of Ca2+. By means of tryptophan modification, we were able to infer that the tryptophan residues are in the vicinity of the Ca2+ binding site and are directly involved in the binding with ANS. This, together with the suggestion that the hydrophobic pocket that interacts with ANS might be the site of binding of the phospholipase A2 enzyme with the substrate, suggests that the Trp residues in phospholipase A2 enzymes and presynaptic toxins are involved in substrate binding.  相似文献   

7.
Summary Chloroplasts and pigment granules are known to be intracellularly translocated upon discrete extracellular stimuli. The machineries transducing these signals inside cells are yet not understood. In studies investigating the motility of peroxisomes, we were able to identify both extracellular and intracellular signaling steps regulating movements of these organelles. Following simultaneous stimulation of CHO cells with both extracellular ATP and lysophosphatidic acid, an arrest of peroxisomes was observed. This block of motility was shown to be dependent on signaling cascades involving heterotrimeric G proteins of the class Gi/Go, phospholipase C, calcium influx, and activation of protein kinase C as well as of mitogen-activated protein kinase. Cytosolic phospholipase A2 is a point of convergence for these pathways, resulting in the release of arachidonic acid. This signaling pathway is specific for peroxisomes and does not influence motility of mitochondria, lysosomes, or endosomes. However, since the cytoskeleton and its associated proteins including the motor proteins play an important role in mediating motility of all cell organelles, it may well be that variant signaling cascades exist ensuring specific regulation of each distinct compartment.Abbreviations AA arachidonic acid - ATPS adenosine-5-O-(3-thiotriphosphate) - cAMP cyclic adenosine monophosphate - CaM-PK calmodulin-dependent protein kinase - CLIP cytosolic linker protein - DAG diacylglycerol - DiC8 1,2-dioctanoyl-sn-glycerol - GFP green-fluorescent protein - GTPS guanosine-5-O-(3-thiotriphosphate) - IP3 inositol trisphosphate - LPA lysophosphatidic acid - MAPK mitogen-activated protein kinase - MEK MAPK kinase - PKA protein kinase A - PKC protein kinase C - cPKC classical PKC isoforms - PLA2 phospholipase A2 - PLAP PLA2-activating proteinpeptide - PLC phospholipase C - PP2A protein phosphatase 2A  相似文献   

8.
Activation of cytosolic phospholipase A2 is a typical signal transduction reaction in animal cells and occurs in plants in response to auxin, elicitors and wounding. Exogenously added fluorescent bis-BODIPY-phosphatidylcholine was taken up and hydrolysed by a cellular phospholipase A2. Rapid activation of a phospholipase A2 by auxin in suspension-cultured parsley ( Petrosilenum crispum L.) and soybean ( Glycine max L.) cells was shown by detection and quantification of fluorescent reaction products of phospholipase A2. Hormone-triggered fluorescent fatty acid accumulation could be detected as early as 5 min. Auxins at 2 μM or higher concentrations activated phospholipase A2 and fluorescent fatty acids accumulated 1.1- to threefold after 90–120 min, depending on the auxin concentration. Fluorescent lysolipid did not accumulate up to 150 μM auxin. Known inhibitors of phospholipase A2 inhibited hormone-dependent fluorescent fatty acid accumulation in cell cultures and, previously, elongation growth in etiolated zucchini hypocotyl segments ( Scherer & Arnold (1997 ) Planta 202, 462–469). When lipids were labeled by [14C]-choline and [14C]-ethanolamine the corresponding lysophospholipids could be quantified in cell extracts. Radioactive lysophospholipids accumulated as rapidly as 1–2 min after auxin treatment but only at concentrations well above 100 μM auxin. We hypothesize that phospholipase A2 activation is an early intermediate step between receptor and downstream responses. We hypothesize that fatty acid(s) could be second messengers in several auxin functions, especially in cell elongation. Lysophospholipids seem to be indicators or second messengers for stress caused by high auxin concentrations or may have different auxin-linked functions and are also known to accumulate during elicitor action.  相似文献   

9.
Signal transduction induced by generation of second messengers from membrane phopholipids is considered a major regulatory mechanism in control of cell proliferation. We report here that in the Xenopus laevis oocytes model, microinjection of the three most relevant types of phospholipases acting on membrane phospholipids (A2, C, and D) are capable of inducing oocyte maturation with similar efficiencies. This effect is mediated by the generation of known second messengers such as lyso-phospholipids, arachidonic acid, diacylglycerol, and phosphatidic acid. Specific inhibitors of protein kinase C made it possible to identify alternative independent signalling pathways for induction of oocyte maturation. Our results indicate that while phospholipase C seems to be dependent on protein kinase C (PKC), phospholipase A2, and phospholipase D are completely independent of protein kinase C function. Thus, the oocyte system is a powerful tool for the analysis of the potential mitogenic activity of lipid metabolites. It is also an excellent tool for unravelling the different routes involved in the regulation of cell growth.  相似文献   

10.
In this paper we show that exposure of a rat brain synaptosome fraction to the amyloid beta peptide fragment A(25-35), but not the inverted peptide A(35-25), stimulated production of reactive oxygen species (ROS) in a concentration- and time-dependent manner. The ROS formation was attenuated by the tyrosine kinase inhibitor genistein, the mitogen-activated protein kinase inhibitor U0126, and the phospholipase A2 (PLA2) inhibitor 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid. This strongly suggests that A(25-35) stimulated ROS production through an extracellular signal-regulated kinase-PLA2-dependent pathway. The interaction between these enzymes and their possible involvement in free radical formation in Alzheimer's disease are discussed.  相似文献   

11.
Many lipids or lipid-derived products generated by phospholipases acting on phospholipids in membranes are implicated as mediators and second messengers in signal transduction. Our current understanding of the primary sequence relationships within the class of extracellular phospholipase A2's and among the numerous forms of the mammalian phosphatidylinositol-specific phospholipase C's is reviewed. New results suggesting roles for these phospholipases as well as other phospholipases such as phospholipase C and D acting on phosphatidlycholine in generating arachidonic acid for eicosanoid biosynthesis, inositol phosphates for Ca2+ mobilization, and diglyceride for protein kinase C activation through receptor-mediated processes, are discussed. In addition, the possible role of phospholipases acting on sphingolipids such as sphinglomyelinase in generating lipid mediators is considered.  相似文献   

12.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

13.
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.  相似文献   

14.
Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [3H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A2 and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A2, cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Treatment of cultured bovine carotid artery endothelial cells with 0.1 µM human plasmin has been reported to induce a receptor-mediated short burst of arachidonate release, which is a pertussis toxin-sensitive and extracellular calcium-dependent reaction. Plasmin-induced calcium influx in cells was significantly inhibited by pretreatment with pertussis toxin, indicating that the former was coupled with a pertussis toxin-sensitive guanosine 5-triphosphate (GTP)-binding protein. Plasmin significantly induced the formation of lysophosphatidylcholine but not lysophosphatidylethanolamine. A cellular phospholipase A2 with an arachidonyl specificity at the sn-2 position of phosphatidylcholine, which required submicromolar calcium, was identified as a cytosolic phospholipase A2 by immunoblot analysis. By a cell-free enzyme activity assay and immunoblot analysis, plasmin was found to induce a translocation of the cytosolic phospholipase A2 from the cytosol to the membrane. Taken together, the results suggest that plasmin bound to its putative receptor and activated a GTP-binding protein coupled to calcium influx channel, followed by translocation and activation of cytosolic phospholipase A2 in endothelial cells.  相似文献   

17.
The human monoclonal antibody AE6F4 specifically reacts with human lung cancer tissues but does not with normal tissues. This monoclonal antibody recognizes a cytosolic 31 kDa antigen in the cancer cells. In a previous study, we elucidated that the 31 kDa antigen belonged to a family of proteins collectively designated as 14-3-3 proteins, which were known as protein kinase-dependent activators of tyrosine/trytophan hydroxylases, or protein kinase C inhibitor proteins. Here we report molecular cloning of the 31 kDa antigen from the human lung adenocarcinoma cell line, A549. Sequencing analysis indicates that the cloned cDNA is identical to that of previously reported human placental cytosolic phospholipase A2 (cPLA2), which is also a member of the 14-3-3 protein family. Western analysis demonstrated that a 31 kDa recombinant cPLA2 expressed in monkey COS cells was recognized by the AE6F4 monoclonal antibody. Binding of the monoclonal antibody to the recombinant cPLA2 was abolished when treated with sodium periodate, suggesting that not only are carbohydrate chains associated with the cPLA2, but they also play a crucial role in antigen recognition by the monoclonal antibody.  相似文献   

18.
Incubation of rocker-cultured neonatal rat heart cells with 3 mM L(+)-lactate led to a sharp increase in the sensitivity of cardiomyocytes to the beta-adrenergic agonist isoprenaline, as measured by their chronotropic response. This effect was accompanied by a reduction in the arachidonic acid content of the total phospholipids. The phospholipase A2-activator melittin as well as free arachidonic acid induced this supersensitivity to the same degree. On the other hand, the L(+)-lactate-evoked supersensitivity could be blocked by the phospholipase A2 inhibitors mepacrine and n-bromophenacyl-bromide, suggesting an involvement of phospholipase A2 in the process of beta-adrenergic sensitization. The sensitizing action of arachidonic acid was blocked by the lipoxygenase inhibitors esculetin and nordihydroguaiaretic acid, but not by the cyclooxygenase inhibitor indomethacin. Supersensitivity was likewise evoked by 15-S-hydroxyeicosatetraenoic acid (15-S-HETE), but not by 5-S-HPETE or 5-S-HETE. These findings suggest that the phospholipase A2-15-lipoxygenase pathway plays a role in the induction of beta-adrenergic supersensitivity in the cultured cardiomyocytes and point to a new physiological role of the lipoxygenase product 15-S-HETE.Abbreviations NDGA nordihydroguaiaretic acid - HETE hydroeicosatetraenoic acid - HPETE hydroperoxyeicosatetraenoic acid  相似文献   

19.
A series of inhibitors of glucosylceramide synthesis, the PDMP based family of compounds, has been developed as a tool for the study of sphingolipid biochemistry and biology. During the course of developing more active glucosylceramide synthase inhibitors, we identified a second site of inhibitory activity for PDMP and its structural homologues that accounted for the ability of the inhibitors to raise cell and tissue ceramide levels. This inhibitory activity was directed against a previously unknown pathway for ceramide metabolism, viz. the formation of 1-O-acylceramide. In this pathway the addition of a fatty acyl group to the primary hydroxyl of ceramide occurs through a transacylation with either phosphatidylethanolamine or phosphatidylcholine as a substrate. However, both in the absence and presence of ceramide, water serves as an acceptor for the fatty acid. Thus the enzyme may be considered to be a phospholipase A2. The enzyme is unique in that it has an acidic pH optimum and is localized to lysosomes by cell fractionation. More recently, the 1-O-acylceramide synthase has been purified, sequenced, and cloned. This phospholipase A2 was discovered to be structurally homologous to lecithin cholesterol acyltransferase (LCAT). However, this phospholipase A2 does not recognize cholesterol and lacks the defined lipoprotein-binding domain present in LCAT. We now refer to this enzyme as lysosomal phospholipase A2 (LPLA2). Although acidic phospholipase A2 activities have been previously identified, LPLA2 appears to be the first lysosomal PLA2 to have been sequenced. This new phospholipase A2 lacks an obvious and proven biological function. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The present study was undertaken to test the hypothesis that activation of cell membrane associated protein kinase C (PKC) plays a role in stimulating cell membrane associated phospholipase A2 (PLA2) activity, and subsequent liberation of arachidonic acid (AA) under exposure of rabbit pulmonary arterial smooth muscle cells to the oxidant hydrogen peroxide (H2O2). Exposure of the smooth muscle cells to H2O2 dose-dependently stimulates [14C] AA release, and enhances the cell membrane associated PLA2 activity. Pretreatment of the cells with protein kinase C (PKC) inhibitors H7 and sphingosine prevent the cell membrane associated PLA2 activity, and AA release caused by H2O2. Treatment of the smooth muscle cells with H2O2 stimulates the cell membrane associated PKC activity. Pretreatment of the cells with an antioxidant vitamin E prevents H2O2 caused stimulation of the cell membrane associated PKC activity. The cell membrane associated PLA2 and PKC activities correlate linearly. These results suggest that H2O2 caused stimulation of the smooth muscle cell membrane associated PLA2 activity, and subsequent liberation of AA can occur through an increase in the activity of the cell membrane associated PKC. (Mol Cell Biochem122: 9–15, 1993)Abbreviations AA Arachidonic Acid - PLA2 Phospholipase A2 - PKC Protein Kinase C - PBS Phosphate Buffered Saline - HBPS Hank's Buffered Physiological Saline - HEPES 4-(2-Hydroxyethyl)-1-Piperazine N-2-Ethanesulfonate - FCS Fetal Calf Serum - ATP Adenosine Triphosphate - H7 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine - DMEM Dulbecco's Modified Eagles Medium - TCA Trichloroacetic Acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号