首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host’s fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR). It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism) in Mediterranean geckos (Hemidactylus turcicus) infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity) and CO2 production. In recently active geckos (chased for 3 minutes), we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary). Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness.  相似文献   

2.
Translocated from their native range in the Americas in 1935, cane toads (Rhinella marina, Bufonidae) have now spread through much of tropical and subtropical Australia. The toad's invasion and impact have attracted detailed study. In this paper, I review information on ecological interactions between cane toads and Australian anurans. The phylogenetic relatedness and ecological similarity between frogs and toads creates opportunities for diverse interactions, ranging from predation to competition to parasite transfer, plus a host of indirect effects mediated via impacts of toads on other species, and by people's attempts to control toads. The most clear‐cut effect of toads on frogs is a positive one: reducing predator pressure by fatally poisoning anuran‐eating varanid lizards. However, toads also have a wide range of other effects on frogs, some positive (e.g. taking up parasites that would otherwise infect native frogs) and others negative (e.g. eating frogs, poisoning frogs, competing with tadpoles). Although information on such mechanisms predicts intense interactions between toads and frogs, field surveys show that cane toad invasion has negligible overall impacts on frog abundance. That counter‐intuitive result is because of a broad balancing of negative and positive impacts, coupled with stochastic (weather‐induced) fluctuations in anuran abundance that overwhelm any impacts of toads. Also, the impacts of toads on frogs differ among frog species and life‐history stages, and depend upon local environmental conditions. The impacts of native frogs on cane toads have attracted much less study, but may well be important: frogs may impose biotic resistance to cane toad colonization, especially via competition in the larval phase. Overall, the interactions between native frogs and invasive toads illustrate the diverse ways in which an invader's arrival can perturb the native fauna by both direct and indirect mechanisms, and by which the native species can curtail an invader's success. These studies also offer a cautionary tale about the difficulty of predicting the impact of an invasive species, even with a clear understanding of mechanisms of direct interaction.  相似文献   

3.
This report describes the finding of Reighardia sp. (Pentastomida) infecting the air sac of two Belcher's gulls (Larus belcheri) found dead on the beaches of Pucusana, a district in southern Lima, Peru. Three pentastomes were collected from two Belcher's gulls. Then, they were morphologically and molecular analyzed. Molecular characterization of the parasite was achieved by amplifying a fragment of the small subunit ribosomal RNA gene (SSU rRNA). Based on both morphological and molecular data the pentastomes were identified as pentastomes of the genus Reighardia. This is the first report showing that the Belcher's gull is a new natural definitive host for this pentastome.  相似文献   

4.
The outcomes of host-parasite interactions depend heavily on the host's immune response, which, in turn, is governed by previous interactions between the host and parasite, both over the host's life time and over evolutionary time. In the case of species introductions, such as the cane toad (Bufo marinus) to Australia, parasites that are benign to native species of the introduced range may present a major challenge to the introduced species. Stomachs of introduced cane toads and seven species of sympatric native frogs were examined for parasites, and their pathology and biology were compared. Cane toads were host to eight species of third-stage spirurid larvae, six of which also occurred in the stomach wall of four native frog species. In general, encysted nematode larvae attained higher prevalence and species richness in introduced cane toads than in sympatric native frogs. This trend was largely explained by differences in body sizes: larger anurans were more likely to possess infections, and cane toads are inherently larger than native frogs. Encysted larvae in cane toad stomachs provoked a marked pathologic response. All larvae (physalopterine and Physocephalus spp.) were surrounded by concentric layers of dense, fibrous tissue, with considerable cellular infiltration characterized by lymphocytes and polymorphs. Many cysts were invaded by cells and exudate, which, in more advanced cases, became calcified. Some larvae appeared viable; most were in various stages of destruction, and some smaller Physocephalus spp. were mummified. Conversely, pathologic response observed in native frogs was minimal, with little fibrotic reaction surrounding the cysts, and no cellular infiltration. Presumably, the contrast in pathology between introduced and native hosts reflects the long evolutionary association between these nematode larvae and native frogs, whereas the recent exposure of introduced toads to these helminths provokes a severe reaction.  相似文献   

5.
Parasites that are carried by invasive species can infect native taxa, with devastating consequences. In Australia, invading cane toads (Rhinella marina) carry lungworm parasites (Rhabdias pseudosphaerocephala) that (based on previous laboratory studies) can infect native treefrogs (Litoria caerulea and L. splendida). To assess the potential of parasite transmission from the invader to the native species (and from one infected native frog to another), we used surveys and radiotelemetry to quantify anuran microhabitat use, and proximity to other anurans, in two sites in tropical Australia. Unsurprisingly, treefrogs spent much of their time off the ground (especially by day, and in undisturbed forests) but terrestrial activity was common at night (especially in anthropogenically modified habitats). Microhabitat overlap between cane toads and frogs was generally low, except at night in disturbed areas, whereas overlap between the two frog species was high. The situations of highest overlap, and hence with the greatest danger of parasite transmission, involve aggregations of frogs within crevices by day, and use of open ground by all three anuran species at night. Overall, microhabitat divergence between toads and frogs should reduce, but not eliminate, the transmission of lungworms from invasive toads to vulnerable native frogs.  相似文献   

6.
Documenting patterns of host specificity in parasites relies on the adequate definition of parasite species. In many cases, parasites have simplified morphology, making species delimitation based on traditional morphological characters difficult. Molecular data can help in assessing whether widespread parasites harbour cryptic species and, alternatively, in guiding further taxonomic revision in cases in which there is morphological variation. The duck louse genus Anaticola (Phthiraptera: Philopteridae), based on current taxonomy, contains both host‐specific and widespread species. Mitochondrial and nuclear DNA sequences of samples from this genus were used to document patterns of host specificity. The comparison of these patterns with morphological variations in Anaticola revealed a general correspondence between the groups identified by DNA sequences and morphology, respectively. These results suggest that a more thorough taxonomic review of this genus is needed. In general, the groups identified on the basis of molecular data were associated with particular groups of waterfowl (e.g. dabbling ducks, sea ducks, geese) or specific biogeographic regions (e.g. North America, South America, Australia, Eurasia).  相似文献   

7.
One-hundred twelve amphibians, including 51 blue-spotted salamanders, Ambystoma laterale, 30 eastern American toads, Bufo americanus americanus, and 31 northern leopard frogs, Rana pipiens, were collected during April-October 1996 from Waukesha County, Wisconsin and examined for helminth parasites. The helminth compound community of this amphibian assemblage consisted of at least 10 species: 9 in American toads, 8 in leopard frogs, and 3 in blue-spotted salamanders. American toads shared 7 species with leopard frogs, and 2 species occurred in all 3 host species. Although there was a high degree of helminth species overlap among these sympatric amphibians, statistically significant differences were found among host species and percent of indirect or direct-life cycle parasites of amphibian species individual component communities (chi2 = 1,015, P < 0.001). American toads had a higher relative abundance of nematodes, 59%, than larval cestodes, 31%, and larval and adult trematodes, 10%, whereas leopard frogs had a higher relative abundance of larval cestodes, 71.3%, and larval and adult trematodes, 25.3%, than nematodes 3.4%. This is related to ecological differences in habitat and dietary preferences between these 2 anuran species. Helminth communities of blue-spotted salamanders were depauperate and were dominated by larval trematodes, 94%, and few nematodes, 6%. Low helminth species richness in this host species is related to this salamander's relatively small host body size, smaller gape size, lower vagility, and more fossorial habitat preference than the other 2 anuran species. Adult leopard frogs and toads had significantly higher mean helminth species richness than metamorphs, but there was no significant difference in mean helminth species richness among adult and metamorph blue-spotted salamanders. Considering adult helminths, the low species richness and low vagility of caudatans as compared with anurans suggest that local factors may be more important in structuring caudatan helminth communities of salamanders than of anuran hosts. Helminth species infecting salamanders may be more clumped in their geographic distribution as compared with anurans, and the role of other hosts and their parasites at the compound community level may be important in structuring helminth communities of salamanders.  相似文献   

8.
Sixty-two brown anoles, Anolis sagrei, from Oahu, Hawaii were examined for helminths. Anolis sagrei was introduced to Hawaii, presumably from the Caribbean. Two species of trematodes, Mesocoelium monas and Platynosomum fastosum, 3 species of nematodes, Atractis scelopori, Physaloptera squamatae, and Physocephalus sp., 1 acanthocephalan, Acanthocephalus bufonis, and 1 pentastome, Raillietiellafrenatus, were found. Atractis scelopori and P. squamatae, previously unknown in Hawaii, are widely distributed in the Caribbean and were most likely transported to Hawaii with the introduced anoles. Mesocoelium monas, P. fastosum, Physocephalus sp., A. bufonis, and R. frenatus have been previously reported from Hawaiian herptiles; A. sagrei most likely acquired infections of these parasites from Hawaiian populations. This study indicates that helminths can be transported with their introduced hosts and become established in the colonized areas and that introduced lizards may quickly acquire species of previously established helminthes.  相似文献   

9.
A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mitochondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocytozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relationships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi, is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis. Explicit hypothesis testing supported these conclusions.  相似文献   

10.
Representatives of 5 amphibian species (313 individuals), including eastern American toads (Bufo americanus), wood frogs (Rana sylvatica), spring peepers (Pseudacris crucifer), blue-spotted salamanders (Ambystoma laterale), and central newts (Notophthalmus viridescens louisianensis), were collected from 3 ephemeral ponds during spring 1994, and they were inspected for helminth parasites. The component communities of anurans were more diverse than those of caudates. Infracommunities of all host species were isolationist and depauperate, due mostly to host ectothermy and low vagility. Toad infracommunities were dominated by skin-penetrating nematodes, and they had the highest values of mean total parasite abundance, mean species richness, and overall prevalence. This was likely due to their greater vagility compared with other host species. Infracommunities of wood frogs and blue-spotted salamanders had intermediate values for these measures of parasitism, whereas spring peeper and newt infracommunities had the lowest values. In addition to relative vagility, feeding habits and habitat preference were likely important in helminth community structure. Body size also seemed to play a role because mean wet weight of host species followed the same general trend as values of parasitism. However, effects of size were variable within host species and difficult to separate from other aspects of host ecology.  相似文献   

11.
The success of a biological invasion can depend upon other invasions; and in some cases, an earlier invader may fail to spread until facilitated by a second invader. Our study documents a case whereby an invasive parasite has remained patchily distributed for decades due to the fragmented nature of available hosts; but the recent arrival of a broadly distributed alternative invasive host species provides an opportunity for the parasite to expand its range considerably. At least 20 years ago, endoparasitic pentastomids (Raillietiella frenata) were brought with their native host, the invasive Asian house gecko Hemidactylus frenatus, to the port city of Darwin in tropical Australia. These geckos rarely disperse away from human habitation, restricting the transmission of their parasites to urban environments – and thus, their pentastomids have remained patchily distributed and have only been recorded in scant localities, primarily surrounding Darwin. The recent range expansion of the invasive cane toad Rhinella marina into the Darwin area has provided an alternative host for this pentastomid. Our results show that the cane toad is a competent host for Ra. frenata– toads shed fully embryonated pentastomid eggs in their faeces – and that pentastomids are now common in cane toads near Darwin. Likely reflecting the tendency for the parasite's traditional definitive host (the Asian house gecko) and only known intermediate host (the cockroach) to reside around buildings, we found the prevalence of this parasite follows an urban distribution. Because cane toads are widely distributed through urban and rural habitat and can shed viable pentastomid eggs, the toad invasion is likely to facilitate the parasite's spread across the tropics, into areas (and additional susceptible hosts) that were previously inaccessible to it.  相似文献   

12.
Patterns and likely processes connected with evolution of host specificity in congeneric monogeneans parasitizing fish species of the Cyprinidae were investigated. A total of 51 Dactylogyrus species was included. We investigated (1) the link between host specificity and parasite phylogeny; (2) the morphometric correlates of host specificity, parasite body size, and variables of attachment organs important for host specificity; (3) the evolution of morphological adaptation, that is, attachment organ; (4) the determinants of host specificity following the hypothesis of specialization on more predictable resources considering maximal body size, maximal longevity, and abundance as measures of host predictability; and (5) the potential link between host specificity and parasite diversification. Host specificity, expressed as an index of host specificity including phylogenetic and taxonomic relatedness of hosts, was partially associated with parasite phylogeny, but no significant contribution of host phylogeny was found. The mapping of host specificity into the phylogenetic tree suggests that being specialist is not a derived condition for Dactylogyrus species. The different morphometric traits of the attachment apparatus seem to be selected in connection with specialization of specialist parasites and other traits favored as adaptations in generalist parasites. Parasites widespread on several host species reach higher abundance within hosts, which supports the hypothesis of ecological specialization. When separating specialists and generalists, we confirmed the hypothesis of specialization on a predictable resource; that is, specialists with larger anchors tend to live on fish species with larger body size and greater longevity, which could be also interpreted as a mechanism for optimizing morphological adaptation. We demonstrated that ecology of host species could also be recognized as an important determinant of host specificity. The mapping of morphological characters of the attachment organ onto the parasite phylogenetic tree reveals that morphological evolution of the attachment organ is connected with host specificity in the context of fish relatedness, especially at the level of host subfamilies. Finally, we did not find that host specificity leads to parasite diversification in congeneric monogeneans.  相似文献   

13.
14.
Intra-species morphological variation presents a considerable problem for species identification and can result in taxonomic confusion. This is particularly pertinent for species of Neobenedenia which are harmful agents in captive fish populations and have historically been identified almost entirely based on morphological characters. This study aimed to understand how the morphology of Neobenedenia girellae varies with host fish species and the environment. Standard morphological features of genetically indistinct parasites from various host fish species were measured under controlled temperatures and salinities. An initial field-based investigation found that parasite morphology significantly differed between genetically indistinct parasites infecting various host fish species. The majority of the morphological variation observed (60%) was attributed to features that assist in parasite attachment to the host (i.e. the posterior and anterior attachment organs and their accessory hooks) which are important characters in monogenean taxonomy. We then experimentally examined the effects of the interaction between host fish species and environmental factors (temperature and salinity) on the morphology of isogenic parasites derived from a single, isolated hermaphroditic N. girellae infecting barramundi, Lates calcarifer. Experimental infection of L. calcarifer and cobia, Rachycentron canadum, under controlled laboratory conditions did not confer host-mediated phenotypic plasticity in N. girellae, suggesting that measured morphological differences could be adaptive and only occur over multiple parasite generations. Subsequent experimental infection of a single host species, L. calcarifer, at various temperatures (22, 30 and 32?°C) and salinities (35 and 40‰) showed that in the cooler environments (22?°C) N. girellae body proportions were significantly smaller compared with warmer temperatures (30 and 32?°C; P?<?0.0001), whereas salinity had no effect. This is evidence that temperature can drive phenotypic plasticity in key taxonomic characters of N. girellae under certain environmental conditions.  相似文献   

15.
Summary The helminth communities from ten species of lizard on seven islands in the Caribbean were sampled by collecting one hundred specimens of each species. Nine genera of parasites were identified; these included six nematodes, two digeneans and an acanthocephalan. No relationship was discernible between parasite density or abundance and island area or altitude, although dry islands tend to have fewer species of parasites. Anolis lizards of the bimaculatus and wattsi series share similar parasites with four out of nine species common to both series. The parasite community of lizards on these islands is depauperate with respect to similar surveys on the larger islands of the Greater Antilles.On three of the islands lizards were sub-sampled by collecting from moist woodland and more xeric habitats. These data suggest that differences between habitats are as significant as differences between islands in determining parasite burdens. Worm burdens of the commonest parasite species, T. cubensis, increased monotonically with host body size and no evidence was found to suggest that these parasites affect either host survival or fecundity. The sex-ratio of this species correlated with mean abundance of the parasite, with females the dominant sex on islands or in habitats where the parasite was common. This pattern may reflect haplodiploid sexual determination in this species.  相似文献   

16.
Tetraphyllidean cestodes are cosmopolitan, remarkably host specific, and form the most speciose and diverse group of helminths infecting elasmobranchs (sharks, skates and rays). They show substantial interspecific variation in a variety of morphological traits, including body size. Tetraphyllideans represent therefore, an ideal group in which to examine the relationship between parasite body size and abundance. The individual and combined effects of host size, environmental temperature, host habitat, host environment, host physiology, and host type (all likely correlates of parasite body size) on parasite length were assessed using general linear model analyses using data from 515 tetraphyllidean cestode species (182 species were included in analyses). The relationships between tetraphyllidean cestode length and intensity and abundance of infection were assessed using simple linear regression analyses. Due to the contrasting morphologies between shark and batoid hosts, and contrasting physiologies between sharks of the Lamnidae family and other sharks, analyses were repeated in different subsets based on host morphology and physiologies (“sharks” vs. batoids) to determine the influence of these variables on adult tetraphyllidean tapeworm body size. Results presented herein indicate that host body size, environmental temperature and host habitat are relatively important variables in models explaining interspecific variations in tetraphyllidean tapeworm length. In addition, a negative relationship between tetraphyllidean body size and intensity of infection was apparent. These results suggest that space constraints and ambient temperature, via their effects on metabolism and growth, determine adult tetraphyllidean cestode size. Consequently, a trade-off between size and numbers is possibly imposed by external forces influencing host size, hence limiting physical space or other resources available to the parasites.  相似文献   

17.
Malaria parasites in the genus Plasmodium have been classified primarily on the basis of differences in morphology. These single-celled organisms often lack distinguishing morphological features, and this can encumber both species delimitation and identification. Six saurian malaria parasites have been described from the Caribbean island of Hispaniola. All six infect lizards in the genus Anolis, but only two of these parasites can be distinguished using morphology. The remaining four species overlap in morphology and geography, and cannot be consistently identified using traditional methods. We compared a morphological approach with a molecular phylogenetic approach for assessing the taxonomy of these parasites. We surveyed for blood parasites from 677 Anolis lizards, representing 26 Anolis spp. from a total of 52 sites across Hispaniola. Fifty-five of these lizards were infected with Plasmodium spp., representing several new host records, but only 24 of these infections could be matched to previously described species using traditional morphological criteria. We then estimated the phylogeny of these parasites using both mitochondrial (cytb and coxI) and nuclear (EF2) genes, and included carefully selected GenBank sequences to confirm identities for certain species. Our molecular results unambiguously corroborated our morphology-based species identifications for only the two species previously judged to be morphologically distinctive. The remaining infections fell into two well-supported and reciprocally monophyletic clades, which contained the morphological variation previously reported for all four of the morphologically ambiguous species. One of these clades was identified as Plasmodium floridense and the other as Plasmodium fairchildi hispaniolae. We elevate the latter to Plasmodium hispaniolae comb. nov. because it is polyphyletic with the mainland species Plasmodium fairchildifairchildi and we contribute additional morphological and molecular characters for future species delimitation. Our phylogenetic hypotheses indicate that two currently recognised taxa, Plasmodium minasense anolisi and Plasmodium tropiduri caribbense, are not valid on Hispaniola. These results illustrate that molecular data can improve taxonomic hypotheses in Plasmodium when reliable morphological characters are lacking.  相似文献   

18.
There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts’ clade diversification suggests it is strongly influenced by ecological and contemporary constrains.  相似文献   

19.
Linking ecology with parasite diversity in Neotropical fishes   总被引:1,自引:0,他引:1  
A comparative analysis was performed to seek large-scale patterns in the relationships between a set of fish species traits (body size, type of environment, trophic level, schooling behaviour, depth range, mean habitat temperature, geographical range, ability to enter brackish waters and capability of migration) and the diversity of their metazoan parasite assemblages among 651 Neotropical fish species. Two measurements of parasite diversity are used: the species richness and the taxonomic distinctness of a fish's parasite assemblage, including all metazoan parasites, ectoparasites only, or endoparasites only. The results showed that, on this scale, the average taxonomic distinctness of parasite assemblages was clearly more sensitive to the influence of host traits than parasite species richness. Differences in the taxonomic diversification of the parasite assemblages of different fish species were mainly related to the fish's environment (higher values in benthic–demersal species), trophic level (positive correlation with increasing level), temperature (positive correlation with temperature in marine ectoparasites, negative in endoparasites; positive for all groups of parasites in freshwater fishes) and oceanic distribution (higher values in fish species from the Pacific Ocean than those of the Atlantic). The results suggest that, among Neotropical fish species, only certain key host traits have influenced the processes causing the taxonomic diversification of parasite assemblages.  相似文献   

20.
Parasite transfer to native fauna is a potentially catastrophic impact of invasive species. Introduced cane toads in Australia frequently host the nematode lungworm Rhabdias pseudosphaerocephala, which reduces viability of metamorph toads. If native frogs are vulnerable to this South American parasite, cane toad invasion may affect native species via this route; but if the native taxa are not vulnerable, we may be able to exploit the parasites for managing toads. Our laboratory experiments show that infective larvae can penetrate the body of all seven species of Australian frogs (five hylids: Cyclorana longipes, Litoria caerulea, Litoria dahlii, Litoria nasuta, Litoria rothii, one myobatrachid: Opisthodon ornatus, and one limnodynastid: Limnodynastes convexiusculus) we tested, but most did not host the adult worms at the end of the trials, and none showed major impairment of growth, survival or locomotor performance. One native tree‐frog (L. caerulea) retained high infection levels with few ill effects, suggesting that we might be able to use this taxon as a reservoir species to build up local parasite densities for toad management. However, the interspecific variation in lungworm retention suggests that generalizations about parasite effects on native frogs will be elusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号