首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assignments in the 1H NMR spectrum for more than 120 resonances arising from 38 of the 130 amino acid residues of human lysozyme are presented. Assignments have been achieved using a combination of one and two-dimensional NMR techniques. Two-dimensional double-quantum correlated spectroscopy and relayed coherence transfer spectroscopy were found to be particularly useful for the identification of spin systems in the aromatic and methyl regions of the spectrum. These spin systems were assigned to specific residues in human lysozyme with reference to the X-ray crystal structure using one-dimensional nuclear Overhauser enhancement (NOE) data and a computer-based search procedure. Unique assignments were found for resonances of 27 amino acid residues even when a distance constraint on NOE effects of 0.7 nm was used in the search procedure; for the remaining residues closer constraints or additional information were required. The assignments include all but one of the resonances in the aromatic region of the spectrum and all the methyl group resonances in the region upfield of 0.6 ppm. The assignments presented here provide a basis for a comparison of the NMR spectra of human lysozyme and the more widely studied hen lysozyme.  相似文献   

2.
Native intact bovine PTH was studied by proton nuclear magnetic resonance (NMR) techniques, at pH 3.5 and pH 6.3. The 1H-NMR spectra had good resolution and many multiplet structures were observed. Assignment of the NMR resonances corresponding to specific amino acids was approached using 1H chemical shifts, coupling constants, and pH dependence in the one-dimensional spectra and the 1H-1H connectivities revealed in two-dimensional homonuclear correlated spectroscopy (COSY) experiments. All the aromatic proton resonances were assigned. Two histidine residues had lower pK than the other two. The methyl groups of two residues were moved significantly downfield: using COSY and two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) correlations, these were assigned to an alanine residue close to both Trp-23 and Tyr-43, and a valine residue in close spatial proximity to Trp-23. The NOESY spectrum also showed cross-peaks between the residues of the upfield valine-leucine-isoleucine methyl envelope. Many of the H alpha protons moved upfield as the pH was increased. These results indicate that intact native PTH exists in a preferred conformation in solution at pH 6.5. Our studies have provided new information on the three-dimensional spatial proximity of several amino acids along the polypeptide chain. The observed interactions are consistent with the currently accepted model suggesting that the hormone has two separate structural domains associated with the amino- and carboxy-terminal regions of the molecule respectively. The potential implications of this model for the expression of biological activity are discussed.  相似文献   

3.
B J Lee  H Aiba  Y Kyogoku 《Biochemistry》1991,30(37):9047-9054
The identification and assignment of the proton magnetic resonances of some aliphatic and aromatic amino acid residues of cyclic AMP receptor protein (CRP) are reported. The signals of the leucine and valine residues at around 0 ppm were identified on the basis of intermolecular nuclear Overhauser effects, deuterium labeling, and partial proteolytic digestion. On the addition of cAMP, methyl proton signals due to Val-49 and three leucine residues were detected as upfield-shifted signals at around -0.2 ppm. These signals can be used as indicators of the proper binding of cAMP because they are not observed on the addition of cGMP or 2'-deoxy-cAMP. They are also not observed on cAMP binding to mutant CRP*5 (Ser-62-Phe), which can only be activated by a high concentration of cAMP, but they are observed on cAMP binding to other mutant CRP*s (four species), which can be activated by lower concentrations of cAMP. The resonance of some aromatic protons, i.e., C-2H of two tryptophans, C-2H and C-4H of six histidines, and C-2,6H and C-3,5H of six tyrosine residues in CRP, were assigned by means of deuterium labeling and NOE measurements. The 1H NMR spectrum of labeled CRP [Trp(ring-d5), Phe(ring-d5), and Tyr(3,5-d2)] showed good resolution in the aromatic region. The addition of cAMP to this CRP in D2O caused pronounced line broadening of resonances arising from the residues in the cAMP-binding domain, but the resonances of the DNA-binding domain were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Native kringle 4 from human plasminogen has been studied by two-dimensional 1H-NMR methods in order to obtain new structural information about the kringle fold. Two-dimensional scalar correlated spectroscopy (COSY), two-dimensional dipolar correlated spectroscopy (NOESY) and two-dimensional relayed coherance transfer spectroscopy (RCT) experiments were recorded, allowing most resonances arising from the aromatic and methyl-containing residues to be assigned in the spectrum. From an analysis of NOE data, a small segment of double-stranded beta-sheet has been identified near residues Phe63 and Thr64. Further analysis of the NOESY spectrum has allowed detailed study of the conformation of sidechains located in regions near Leu45 and Val69. A model has been constructed of the polypeptide segment comprising residues 40-49 which accounts for the observed NOE interactions.  相似文献   

5.
The aromatic amino acid composition of the enzyme rhodanese has been redetermined. Previous reports have varied from 5 to 11 tryptophans per 26 alanine residues. The present work has quantitated the aromatic residues by a combination of amino acid analysis, solvent perturbation difference spectroscopy, specific residue modification and direct ultraviolet spectral analysis. These methods indicate that rhodanese contains 10 tyrosines, eight tryptophans and 16 phenylalanines per 26 alanine residues. The results for tyrosine and phenylalanine are in reasonable agreement with previous results.  相似文献   

6.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

7.
A heat-stable protein factor (HSF) obtained from the spleen of a patient with Gaucher's disease that activates glucocerebrosidase was studied by 600-MHz proton NMR spectroscopy. Assignments for a number of aromatic and aliphatic resonances were made on the basis of spin-decoupling, pH-titration, and resolution-enhancement experiments. The upfield ring current shifted aliphatic region and the downfield aromatic region were examined by nuclear Overhauser effect (NOE) methods using both pulsed Fourier-transform spectroscopy and correlation spectroscopy. It was found that a number of upfield-shifted methyl groups and certain methylene groups of specific aliphatic amino acid residues are in proximity relationships with several aromatic residues, forming a compact hydrophobic clustering site. Of special interest, tyrosine A, phenylalanine A, tryptophan B1, and tryptophan B2 were found to be located close to a cluster of aliphatic residues, indicating that the hydrophobic site of the HSF is conformationally rigid and its tertiary structure very compact. A two-dimensional structural model of the hydrophobic site of HSF is proposed.  相似文献   

8.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

9.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

10.
S C Lee  A F Russell 《Biopolymers》1989,28(6):1115-1127
The complete assignment of resonances in the proton nmr spectrum of the 1-34 amino acid fragment of human parathyroid hormone [hPTH(1-34)], determined using a combination of one- and two-dimensional nmr techniques at 500 MHz, is described. In particular, homonuclear Hartmann-Hahn experiments, recorded in H2O and D2O, are used to resolve ambiguities in the connectivities between the highly overlapped resonances in the aliphatic region of the spectrum. One-dimensional multiple quantum filtering experiments are used to identify serine and phenylalanine spin systems. Analyses of the through-bond and through-space connectivities in the alpha H-NH fingerprint regions of the correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) spectra lead to the assignment of resonances to specific amino acid residues in the polypeptide. Examination of the observed NOE cross peaks indicates that hPTH(1-34) has no detectable secondary structural elements in aqueous solution.  相似文献   

11.
A J Wand  S W Englander 《Biochemistry》1986,25(5):1100-1106
The 1H resonances of 11 sequential amino acids in the N-terminal helix of horse ferrocytochrome c were studied by two-dimensional nuclear magnetic resonance techniques. All the main-chain protons from Lys-5 through Ala-15 and many of the side-chain protons were assigned. J-Correlated spectroscopy (COSY) was used to distinguish protons on neighboring bonds and to recognize amino acid types. Nuclear Overhauser effect spectroscopy (NOESY) was used to define spatially contiguous protons and to determine amino acid sequence neighbors. The relayed coherence experiment (relay COSY) was used to resolve many ambiguities in intraresidue J-coupled connectivities and interresidue NOE connectivities. This required no explicit knowledge of the solution structure. The pattern of NOEs found is consistent with a regular alpha helix between glycine-6 and lysine-13; H bonding continues at least through alanine-15 [see Wand, A.J., Roder, H., & Englander, S. W. (1986) Biochemistry (following paper in this issue)]. Chain disorder occurs at the N-terminus. There is no indication of significant spin diffusion among the backbone amide and alpha-protons of this 12.4-kilodalton protein even at the longest NOE mixing time used (140 ms).  相似文献   

12.
The pancreatic secretory trypsin inhibitor from porcine pancreas has been investigated by high-resolution 1H nuclear magnetic resonance (NMR) at 270 MHz. The presence of a number of slowly exchanging labile protons indicates that the protein is highly globular. Of the two tyrosyl rings, one is free-rotating and solvent-exposed while the other one is hindered in its mobility and buried in the interior of the protein. A lineshape analysis of the temperature dependence of aromatic resonances gave the dynamic parameters for activation of ring mobility. The inhibitor exhibits at least three well-resolved high-field ring-current-shifted methyl resonances. Form II of the inhibitor, that lacks the first four residues, has been compared with the intact form I. No detectable differences were found between the spectra of I and II, which indicates that the presence of the N-terminal tetrapeptide does not appreciably affect the overall conformation of the protein.  相似文献   

13.
Assignments of the six sets of aromatic ring protons and four high-field-shifted methyl group protons of the C-terminal fragment of calmodulin, residues 78-148, was achieved by a combination of one and two-dimensional NMR spectroscopic methods. A full spectral analysis of the aromatic region in terms of chemical shifts and scalar coupling constants was achieved and confirmed by spectral simulation. A three-dimensional structural model of the C-terminal fragment was constructed by interactive computer graphics techniques and combined with nuclear Overhauser enhancements to propose sequence assignments for all aromatic and high-field-shifted methyl groups. This computer-generated three-dimensional model was generally supported by the fact that it qualitatively accounted for many of the ring-current-shifted proton resonances and the intraresidue and interresidue nuclear Overhauser enhancements.  相似文献   

14.
Sequence-specific assignments are reported for the 500-MHz 1H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure of Sh I was defined on the basis of the pattern of sequential NOE connectivities, NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel beta-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a beta-bulge at residues 17 and 18 and a reverse turn, probably a type II beta-turn, involving residues 27-30. No evidence of alpha-helical structure was found.  相似文献   

15.
G H Snyder  R Rowan  B D Sykes 《Biochemistry》1976,15(11):2275-2283
The low-field portions of the 250-MHz 1H nuclear magnetic resonance spectra of native and chemically modified basic pancreatic trypsin inhibitor have been studied as a function of pH over the range pH 5-13. In derivatives selectively reduced and carboxamidomethylated at cystine 14-38, resonances associated with 15 of the 16 protons of the aromatic rings of the four tyrosines of the inhibitor have been located and assigned to specific tyrosyl residues. Titrations of pH yielded pK's for tyrosines 10, 21, 23, and 35 in the modified inhibitor of 9.9, 10.6, 11.6, and 11.0, respectively. Resonances associated with the three nitrotyrosine 10 protons of the mononitrated derivative and the six nitrotyrosine 10 and 21 protons of the dinitrated derivative have been similarly located, assigned, and titrated, yielding pK's for nitrotyrosines 10 and 21 of 6.5 and 6.4, respectively. Previously reported results for derivatives with cystine 14-38 intact have been revised on the basis of new data. Comparison of these revised results with the new data for derivatives with modified cystine 14-38 reveals no changes in pK's for any tyrosine or nitrotyrosing ring and no changes in chemical shift for resonances of nitrotyrosine 21 or tyrosines 21 and 23. However, modification of cystine 14-38 causes significant changes in chemical shifts of resonances of the nearby nitrotyrosine 10 and tyrosine 10 and 35 rings. Tyrosine 35 remains relatively immobile, rotating less than 1600 times/s at 25 degrees C for pH's in the range 5-13.  相似文献   

16.
Cyclophilin (163 residues, Mr 17737), a peptidyl prolyl cis-trans isomerase, is a cytosolic protein that specifically binds the potent immunosuppressant cyclosporin A (CsA). The native form of the major bovine thymus isoform has been analyzed by 2D NMR methods, COSY, HOHAHA, and NOESY, in aqueous media. The 156 main-chain amides in CyP yield 126 observable NH/alpha CH couplings (81%, Gly pairs counted as 1). Following exhaustive D2O exchange, 44 amide resonances remain visible. Further analysis of the NH/NH, NH/alpha CH, and alpha CH/alpha CH regions of the COSY and NOESY data sets indicates that the residual amides in D2O form a coherent hydrophobic domain which yields 2D NMR features suggestive of a beta-sheet. Many (43/126) of the amide resonances have been classified according to amino acid type. In the aromatic region of the spectra, the assignment of the ring spin systems is nearly complete (12/15 Phe, 2/2 Tyr, 1/1 Trp, and 3/4 His). This has successfully lead to the complete assignment of all of their beta CH's, main-chain alpha CH resonances, and many of the backbone amide resonances (8/12 Phe, 2/2 Tyr, 1/1 Trp, and 2/3 His). In other regions of the spectrum, the side-chain and main-chain resonances for 10/23 Gly, 9/9 Ala, 5/11 Thr, 5/9 Val, and 1/6 Leu have been completely assigned. The drug-free cyclophilin and CsA-bound cyclophilin form two discrete protein structures that are in slow exchange on the NMR time scale. Comparison of the fingerprint regions from the COSY spectra obtained from the two forms of the protein reveals a minimum of 16 cross-peaks which are clearly shifted upon complexation. In fact, on the basis of chemical shift changes observed in assigned side-chain and main-chain resonances, only a relatively few of the amino acid residues identified to date are perturbed by complex formation. These include 3 Phe (8, 12, and 14) and the Trp in the aromatic region and 2 Ala (7 and 8) in the Ala/Thr region. In the upfield-shifted methyl region, an assigned Leu and Val spin system and a spin system labeled X10 (an Ile or Leu) are affected by complex formation. In addition, a new aliphatic spin system, labeled X11, which shows a close spatial relationship to the perturbed Phe12, is observed in this region of the spectrum. In summary, the regions of the protein altered by complex formation can be divided into two categories: a hydrophobic and a H2O-accessible domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The aromatic regions in proton-decoupled natural abundance 13C Fourier transform nuclear magnetic resonance spectra (at 14.2 kG) of small native proteins contain broad methine carbon bands and narrow nonprotonated carbon resonances. Some factors that affect the use of natural abundance 13C Fourier transform NMR spectroscopy for monitoring individual nonprotonated aromatic carbon sites of native proteins in solution are discussed. The effect of protein size is evaluated by comparing the 13C NMR spectra of horse heart ferrocytochrome c, hen egg white lysozyme, horse carbon monoxide myoglobin, and human adult carbon monoxide hemoglobin. Numerous single carbon resonances are observed in the aromatic regions of 13C NMR spectra of cytochrome c, lysozyme, and myoglobin. The much larger hemoglobin yields few resolved individual carbon resonances. Theoretical and some experimental values are presented for the natural linewidths (W), spin-lattice relaxation times (T1), and nuclear Overhauser enhancements (NOE) of nonprotonated aromatic carbons and Czeta of arginine residues. In general, the 13C-1H dipolar mechanism dominates the relaxation of these carbons. 13C-14N dipolar relaxation contributes significantly to 1/T1 of C epsilon2 of tryptophan residues and Czeta of arginine residues of proteins in D2O. The NOE of each nonprotonated aromatic carbon is within experimental error of the calculated value of about 1.2. As a result, integrated intensities can be used for making a carbon count. Theoretical results are presented for the effect of internal rotation on W, T1, and the NOE. A comparison with the experimental T1 and NOE values indicates that if there is internal rotation of aromatic amino acid side chains, it is not fast relative to the over-all rotational motion of the protein.  相似文献   

18.
In earlier work the resonances of the 20 methyl groups in the basic pancreatic trypsin inhibitor (BPTI) had been identified in the 360-MHz 1H nuclear magnetic resonance (NMR) spectra and most of the methyl lines had from spin-decoupling experiments been assigned to the different types of amino acid residues. The assignments to the different amino acid types were now completed by studies of the saturation transfer between the denatured and the globular forms of the inhibitor and by spin-decoupling experiments in nuclear Overhauser enhancement (NOE) difference spectra. These distinguished between the methyl resonances of Ala and Thr. Furthermore, for most of the methyl resonances, individual assignments to specific residues in the amino acid sequence were obtained from measurements of intramolecular proton-proton NOE's, use of lanthanide NMR shift and relaxation probes, and comparative studies of various chemically modified forms of BPTI. These data provide the basis for individual assignments of the methyl 13C NMR lines in BPTI and for detailed investigations of the relations between the spatial structure of the protein and the chemical shifts of the methyl groups. The methyl groups in BPTI are of particular interest since they are located almost exclusively on the surface of the protein and thus represent potential natural NMR probes for studies of the protein-protein interactions in the complexes formed between BPTI and a variety of proteases.  相似文献   

19.
Bovine and porcine pancreatic phospholipases A2, and porcine isophospholipase A2, have been investigated by one- and two-dimensional 1H NMR spectroscopy. Resonances have been assigned for 20-26 residues in each enzyme, including all the aromatic residues, by a strategy based on the semiquantitative comparison of proximity relationships deduced from NOE experiments with those seen in the crystal structure NOE experiments indicate that the loop comprising residues 59-70, which has a different conformation in the crystal structures of the bovine and porcine enzymes, has the same conformation in these two enzymes in solution. Selective changes in the line width of a limited number of resonances as a function of pH, temperature, and calcium concentration provide evidence for a local conformational equilibrium. This equilibrium involves a limited region of the protein structure around residues 25, 41, 106, and 111; it has been identified in the bovine enzyme and porcine isoenzyme but is not apparent in the porcine enzyme.  相似文献   

20.
The resonances of nonprotonated aromatic carbons in natural abundance 13C NMR spectra of hen egg white lysozyme are assigned to specific residues of the amino acid sequence. Chemical shift considerations, the effect of pH, and partially relaxed Fourier transform NMR spectra are used to assign each resonance to one of the seven types of nonprotonated aromatic carbons of amino acid residues. Spectra of chemically modified lysozyme samples yield various assignments to specific residues in the sequence. Line-broadening effects caused by binding of the relaxation probes Gd3+ and 4-N-acetamido-2,2,6,6-tetramethylipiperidine-1-oxyl yield specific assignments which are fully consistent with those based on chemical modifications. The effects of paramagnetic shift reagents and amino sugar inhibitors do not yield any obvious specific assignments. The effect of pH on the chemical shift of Cgamma of His-15 yields a pKalpha in agreement with published values, and indicates that the imidazole form of His-15 exists mainly (or entirely) as the Nepsilon3-H tautomer. The effect of pH on the chemical shifts (measured up to pH 8.8, at 38 degrees) of Czeta and Cgamma of the 3 tyrosine residues yields crude pKalpha values of 9.5 and 10 for Tyr-23 and one of the other tyrosines, respectively. The 3rd tyrosine residue does not exhibit titration behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号