首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Palaeopropithecids, or “sloth lemurs,” are a diverse clade of large‐bodied Malagasy subfossil primates characterized by their inferred suspensory positional behavior. The most recently discovered genus of the palaeopropithecids is Babakotia, and it has been described as more arboreal than Mesopropithecus, but less than Palaeopropithecus. In this article, the within‐bone and between‐bones articular and cross‐sectional diaphyseal proportions of the humerus and femur of Babakotia were compared to extant lemurs, Mesopropithecus and Palaeopropithecus in order to further understand its arboreal adaptations. Additionally, a sample of apes and sloths (Choloepus and Bradypus) are included as functional outgroups composed of suspensory adapted primates and non‐primates. Results show that Babakotia and Mesopropithecus both have high humeral/femoral shaft strength proportions, similar to extant great apes and sloths and indicative of forelimb suspensory behavior, with Babakotia more extreme in this regard. All three subfossil taxa have relatively large femoral heads, also associated with suspension in modern taxa. However, Babakotia and Mesopropithecus (but not Palaeopropithecus) have relatively small femoral head surface area to shaft strength proportions suggesting that hind‐limb positioning in these taxa during climbing and other behaviors was different than in extant great apes, involving less mobility. Knee and humeral articular dimensions relative to shaft strengths are small in Babakotia and Mesopropithecus, similar to those found in modern sloths and divergent from those in extant great apes and lemurs, suggesting more sloth‐like use of these joints during locomotion. Mesopropithecus and Babakotia are more similar to Choloepus in humerofemoral head and length proportions while Palaeopropithecus is more similar to Bradypus. These results provide further evidence of the suspensory adaptations of Babakotia and further highlight similarities to both extant suspensory primates and non‐primate slow arboreal climbers and hangers. J. Morphol. 277:1199–1218, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
To analyze differences between apes and monkeys and the affinities of man, we have studied the shoulder girdle of 327 specimens of anthropoid primates. The scapula, clavicle and humerus are viewed as an integrated functional complex on the basis of 18 measurements. Several varieties of multivariate analysis show that man is clearly closer to other hominoids than to the included monkey taxa (whether terrestrial or arboreal, Old World or New World). The marked shoulder differences between apes and monkeys and similarities between apes and man correlate with the muscular anatomy, which in hominoids allows the motions involved in their locomotion and feeding behavior. As the hominid-pongid correspondence in shoulder morphology is especially detailed regarding the functionally important joint surfaces, it is consistent with a fairly recent period of common ancestry and behavior. No hypothetical evolutionary pathway or ancestral form of the human shoulder need look far beyond the model afforded by extant pongids. In contrast with previous studies on the primate shoulder, these results agree with information accumulating from other systems—comparative anatomy, primate behavior, and molecular biology — in suggesting very close relationship between man and extant African pongids.  相似文献   

4.
Certain fossil foot bones (a terminal toe phalanx from Olduvai, specimens of tali from Spy, Skhūl, Olduvai, Kromdraai, Songhor and Rusinga) have been investigated by other workers using the multivariate statistical approach. The conclusions of their studies have, in the main, been based upon examination of early canonical variates alone. It is demonstrated here that if the full analyses (generalized distances) are taken into account, then almost exactly opposite conclusions obtain. The terminal toe phalanx from Olduvai is widely different from those of modern men; the Neandertal tali differ more from modern human bones than previously realized; the specimens from Olduvai, Kromdraai, Songhor and Rusinga are all completely dissimilar from both African ape and modern human tali.  相似文献   

5.
The Miocene ape Nacholapithecus is known from rather complete skeletons; some of them preserve the shoulder joint, identified by three scapulae and one clavicle. Comparisons made with other Miocene and living apes (Proconsul, Equatorius, Ugandapithecus) suggest that the mobility of the scapulohumeral joint was important, and scapular features such as the morphology and position of the spine and the morphology of the acromion and axillary border resemble those of climbing arboreal primates except for chimpanzees, gorillas, or orang-utans. From the size of the scapula (male Nasalis size), it is clear that the animal is smaller than an adult chimpanzee, but the clavicle is almost as relatively long as those of chimpanzees. Some features closer to colobine morphology reinforce the hypothesis that Nacholapithecus was probably a good climber and was definitely adapted for an arboreal life.  相似文献   

6.
New early Miocene forelimb fossils have been recovered from the Songhor and Lower Kapurtay localities in southwestern Kenya. We describe four specimens that are similar in size and functional capabilities. Their specific allocation is problematic but these forelimb specimens must belong to either Rangwapithecus gordoni or Proconsul africanus. If these new postcranial specimens should belong to R. gordoni, on the basis of size and common dental specimens found at Songhor, they represent a new elbow complex. The morphology of these fossils is anatomically and functionally similar to that of Proconsul. The proconsuloid elbow complex allows extensive forelimb rotations and is capable of performing arboreal quadrupedalism and climbing activities. No suspensory adaptations are apparent. The proconsuloid elbow complex remains a good ancestral condition for hominoid primates.  相似文献   

7.
The hands of the Hominoidea evidence four adaptive modes which distinguish the lesse apes (Hylobatidae), the orangutan (Pongo), the African apes (Pan), and man (Homo) from one another. The hands of the apes consist of compromises between manipulatory and locomotor functions because selection has operated for precision of grip as well as for special locomotor mechanisms. The human hand is almost totally devoted to manipulation. The hands of gibbons, orangutans and the African apes differ in many features that may be correlated with locomotion. The gibbons and siamang are specially adapted for ricochetal arm-swinging. The great apes possess morphological adaptations for arboreal foraging and climbing distinct from those of the hylobatids. In addition, the African apes have become secondarily adapted for terrestrial quadrupedal locomotion. Many features that distinguish the hands of chimpanzees and gorillas may be associated with the development of efficient knuckele-walking propulsive and support mechanisms.  相似文献   

8.
9.
The oldest ape     
This paper recounts the history and significance of Morotopithecus bishopi, an early Miocene East African ape. Morotopithecus differs in intriguing ways from its contemporary Proconsul. While craniodental differences are slight, the known elements of its postcranium suggest that Morotopithecus was capable of modern ape–like positional behaviors, including vertical postures, deliberate climbing, and arm hanging. In contrast, Proconsul and other early and middle Miocene hominoids have been reconstructed as above–branch quadrupeds. Paleoanthropologists are currently divided over whether and which of the anatomical features associated with upright posture and suspension in the modern apes are due to inheritance or independent evolution. This debate has important implications for interpreting the phylogenetic positions of both Morotopithecus and Proconsul, as well as for reconstructing the pattern and timing of the emergence of modern ape adaptations.  相似文献   

10.
Evolution of the human shoulder: some possible pathways   总被引:1,自引:0,他引:1  
Osteometric data, apparently reflecting functional parameters of the shoulder in the Anthropoidea, have been examined by a combination of multivariate techniques in an attempt to define minimum pathways possibly followed in the evolution of the human shoulder. Principal components analysis has been used to gauge size-related shape effects. The combination of D2 and canonical analysis has suggested that the shoulder in man is unlikely to have evolved (a) from one similar to that of any extant monkey whether arboreal or terrestrial, (b) from one similar to that of any terrestrial ape (like present-day Pan and Gorilla), or (c) from one similar to that of a highly specialised ricochetal armswinging ape (such as present day Hylobates and Symphalangus). The analyses suggest positively that the minimum evolutionary pathway may well have been from the shoulder of a totally arboreal ape, presumably genetically related to Pan and Gorilla, but functionally similar to that evolved in parallel in the highly arboreal orang-utan, Pongo. Information from fragmentary fossils (the scapula from Sterkfontein and the clavicle from Olduvai) supports these conclusions.  相似文献   

11.
Knuckle-walking is a pattern of digitigrade locomotion unique to African apes among Primates. Only chimpanzees and gorillas are specially adapted for supporting weight on the dorsal aspects of middle phalanges of flexed hand digits II–V. When forced to the ground, most orangutans assume one of a variety of flexed hand postures, but they cannot knuckle-walk. Some orangutans place their hands in palmigrade postures which are impossible to African apes. The knuckle-walking hands and plantigrade feet of African apes are both morphologically and adaptively distinct from those of Pongo, their nearest relative among extant apes. These features are associated with a common adaptive shift to terrestrial locomotion and support placing chimpanzees and gorillas in the same genus Pan. It is further suggested than Pan comprises the subgenera (a) Pan, including P. troglodytes and pygmy chimpanzees, and (b) Gorilla, including mountain and lowland populations of P. gorilla. African apes probably diverged from ancestral pongids that were specially adapted for distributing their weight in terminal branches of the forest canopy. Early adjustments to terrestrial locomotion may have involved fist-walking which later evolved into knuckle-walking. Orangutans continued to adapt to feeding and locomotion in the forest canopy and their hands and feet became highly specialized for four-digit prehension. Although chimpanzees retained arboreal feeding and nesting habits, they moved from tree to tree by terrestrial routes and became less restricted in habitat. While adapting to a diet of ground plants gorillas increased in size to the point that arboreal nesting is less frequent among them than among chimpanzees and orangutans. Early hominids probably diverged from pongids that had not developed prospective adaptations to knuckle-walking, and therefore did not evolve through a knuckle-walking stage. Initial adjustments to terrestrial quadrupedal locomotion and resting stance probably included palmigrade hand posturing. Their thumbs may have been already well developed as an adaptation for grasping during arboreal climbing. A combination of selection pressures for efficient terrestrial locomotor support and for object manipulation further advanced early hominid hands toward modern human configuration.  相似文献   

12.
This paper examines the pattern(s) of sexual dimorphism within the upper dentition ofProconsul specimens from the early Miocene of east Africa. These fossils are compared against the corresponding dentition ofPan troglodytes andGorilla gorilla using principal components and cluster analyses. This paper demonstrates that both sexes ofPan andGorilla are characterized by their own distinctive shape patterns. It is also demonstrated that someProconsul specimens examined here display a pattern that is dissimilar from otherProconsul specimens also examined. This suggests that at least two species ofProconsul may have to be recognized as having lived in this region during the early Miocene. The identification of distinct patterns withinProconsul also suggests that their overall shape and size range are more similar toPan than toGorilla.  相似文献   

13.
A maxillary fragment with M2–3 from the middle Miocene of Lothidok Hill, northwestern Kenya represents a new species ofProconsul—the typical East African early and middle Miocene hominoid species group. M2 inProconsul (Xenopithecus)hamiltoni sp. nov. is about 50% larger than in Kenyan lower MioceneP. (X.)koruensis. Xenopithecus is revived as a subgenus ofProconsul because its species are less derived than typical species of that genus in having small—unexpanded—trigons, in possessing an M2 with a significantly lower relative length, and in lacking a hypocone and large metacone on M3; however, xenopithecines share with proconsulines welldefined trigon ridges on M1–3, large hypocones on M1–2, greater relative height of M2–3, and crenulated cingula on M1–3 four character complexes derived over those of plesiomorphous East African early and middle MioceneLimnopithecus. An upper canine from Lothidok Hill represents a second species ofProconsul, P. (Proconsul)major. This identification confirms earlier records of that species from Lothidok.  相似文献   

14.
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin1 fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B‐spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric‐based calculation of curvature to compare modern humans and wild‐caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 1 The term “hominin” refers to members of the tribe Hominini, which includes modern humans and fossil species that are related more closely to modern humans than to extant species of chimpanzees, Wood and Lonergan (2008). Hominins are in the family Hominidae with great apes.  相似文献   

15.

Objectives

Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here, we apply for the first time a “whole‐epiphyses” approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and Australopithecus africanus.

Materials and methods

We use a “whole‐epiphysis” methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, Ateles and A. africanus (StW 328).

Results

There are important differences in the quantification of trabecular parameters using a “whole‐epiphysis” versus a VOI‐based approach. Variation in trabecular structure across knuckle‐walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest A. africanus may have still used its forelimbs for arboreal locomotion.

Discussion

A whole‐epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.
  相似文献   

16.
The ecology of oligocene African anthropoidea   总被引:2,自引:0,他引:2  
African anthropoids are first recorded in Early Oligocene deposits of the Fayum Province, Egypt. Six genera and nine species are recognized. Estimated body weights for these taxa are based on the regression equation log 10(B) = 2.86log 10(L) + 1.37, whereB is the bodyweight in grams, and Lis the M 2 length in millimeters. The equation is derived from 106 species of living primates. Fayum species range in body weight from about 600 g (Apidium moustafai)to about 6000 g (Aegyptopithecus zeuxis).A similar range of body weight is found among extant Cebidae. The Fayum primates are larger than any extant insectivorous primates;this fact probably rules out a predominantly insectivorous diet. Extant frugivorous hominoids can be separated from folivorous hominoids on the basis of molar morphology. Folivorous apes (gorilla and siamang) have proportionately more shearing on their molars than do frugivorous species. Based on the hominoid analogy, the molar morphology of the Fayum species is consistent with a frugivorous diet. Parapithecus grangeristands apart from other Fayum species in having better developed molar shearing, possibly indicating that it had more fiber in its diet. Terrestrial species of Old World monkeys tend to have significantly higher molar crowns than do more arboreal species. This difference may relate to an increased amount of grit in the diet of the more terrestrial species, selecting for greater resistance to wear. Oligocene primates have molar crown heights consistent with a primarily arboreal mode of existence. However, the particularly high molar crowns of Parapithecus grangerisuggest that this species may have foraged on the ground to a considerable degree. Other evidence is advanced suggesting that Apidiummay have had a diurnal activity pattern.  相似文献   

17.

Several porcupine taxa are reported from the middle Miocene to the early Holocene in the Old World. Among these, five species of the subfamily Hystricinae occurred in Africa approximately in the last 6 Ma: the extinct Hystrix makapanensis, Hystrix leakeyi, and Xenohystrix crassidens and the still living Hystrix africaeaustralis and Hystrix cristata. The large-sized H. makapanensis is reported from numerous sites in East and South Africa between the early Pliocene and Early Pleistocene. In this paper, we describe a new mandible of H. makapanensis from the world-renowned Tanzanian paleontological and archeological site of Olduvai Gorge (HWK West; lowermost Bed II; ca. 1.8–1.7 Ma). The discovery of the new mandible triggered a comprehensive review of the entire African record of H. makapanensis. In particular, we describe or re-analyze the samples from South Africa (Makapansgat Limeworks, Gondolin, Kromdraai, Swartkrans, and Sterkfontein), Tanzania (Olduvai and Laetoli), Ethiopia (Omo Shungura and Hadar), and Kenya (Chemeron), enriching the quantity of specimens confidently referable to this species and above all improving the information on its craniodental anatomy. On this basis, we: (1) propose an emended diagnosis of H. makapanensis; (2) point out the morphological and biometric differences between H. makapanensis and other African Hystricinae (also in terms of body mass); and (3) broaden the knowledge on the geographical and chronological distribution of this extinct species.

  相似文献   

18.
There has been much debate as to the locomotor repertoire of Lucy (A.L. 288-1) and other specimens of Australopithecus afarensis, ranging from fully committed bipeds to species that spent a significant time in the trees as well as on the ground. We examined the bar–glenoid angle, a character purported to indicate arboreal propensities, and its implications for this specific debate and the more general challenge of extracting behavioral information from fossils. We examined the bar–glenoid angle in ontogenetic samples of Pan paniscus, Pan troglodytes, Gorilla gorilla gorilla, Gorilla gorilla beringei, Pongo pygmaeus, Homo sapiens, and A.L. 288-1 (Lucy). We found that there is no allometry in the bar–glenoid angle for the great apes, but a weak correlation for humans. Moreover, the data scatters for the African apes and humans converge at the smaller size ranges, and Lucy's value for bar–glenoid angle falls precisely in this area of overlap. Therefore, we conclude that the bar–glenoid angle is not tightly correlated with function and, as such, cannot be used as a morphological signal of arboreal behavior, especially in the smaller size ranges, at which arboreal and nonarboreal species overlap. Our work does not resolve issues concerning Lucy's precise locomotor repertoire but adds new information to consider. The total morphological pattern, plus an appreciation of the underlying variance in morphological and behavioral characters in extant species, is key for making functional inferences from the morphology of fossils.  相似文献   

19.
According to recent taxonomic reclassification, the primate family Hylobatidae contains four genera (Hoolock, Nomascus, Symphalangus, and Hylobates) and between 14 and 18 species, making it by far the most species-rich group of extant hominoids. Known as the "small apes", these small arboreal primates are distributed throughout Southeast, South and East Asia. Considerable uncertainty surrounds the phylogeny of extant hylobatids, particularly the relationships among the genera and the species within the Hylobates genus. In this paper we use parsimony, likelihood, and Bayesian methods to analyze a dataset containing nearly 14 kilobase pairs, which includes newly collected sequences from X-linked, Y-linked, and mitochondrial loci together with data from previous mitochondrial studies. Parsimony, likelihood, and Bayesian analyses largely failed to find a significant difference among phylogenies with any of the four genera as the most basal taxon. All analyses, however, support a tree with Hylobates and Symphalangus as most closely related genera. One strongly supported phylogenetic result within the Hylobates genus is that Hylobates pileatus is the most basal taxon. Multiple analyses failed to find significant support for any singular genus-level phylogeny. While it is natural to suspect that there might not be sufficient data for phylogenetic resolution (whenever that situation occurs), an alternative hypothesis relating to the nature of gibbon speciation exists. This lack of resolution may be the result of a rapid radiation or a sudden vicariance event of the hylobatid genera, and it is likely that a similarly rapid radiation occurred within the Hylobates genus. Additional molecular and paleontological evidence are necessary to better test among these, and other, hypotheses of hylobatid evolution.  相似文献   

20.
Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea. Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号