首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

2.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

3.
4.
Effect of 24,25-dihydroxyvitamin D3 in osteoclasts.   总被引:1,自引:0,他引:1  
Previous results demonstrated that the administration of pharmacological doses of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to animals reduces bone resorption and increases bone volume with a decrease in osteoclast number. In order to clarify whether 24,25(OH)2D3 has an effect to inhibit osteoclastic bone resorption, the effect of 24,25(OH)2D3 on the formation and function of osteoclastic cells was examined in vitro. Treatment of hemopoietic blast cells, which are progenitors of osteoclasts, with parathyroid hormone (PTH) or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) stimulated the formation of osteoclast-like multinucleated cells in a dose-dependent manner. Although 24,25(OH)2D3 in itself had little effect on osteoclast-like multinucleated cells formation, it inhibited the stimulatory effect of PTH on the formation of osteoclastic cells. In addition, 24,25(OH)2D3 also inhibited the stimulation of resorption pit formation by osteoclasts under stimulation with PTH. In contrast, 1,25(OH)2D3 stimulated the formation and function of osteoclastic cells even at low concentrations, and the effect was additive to PTH. These results could not be explained by either an agonistic or antagonistic effect of 24,25(OH)2D3 on 1,25(OH)2D3, and are consistent with the assumption that 24,25(OH)2D3 has a unique inhibitory effect on the formation and function of osteoclasts. Because 24,25(OH)2D3 is shown to stimulate the degradation of 1,25(OH)2D3 and because the formation of 24,25(OH)2D3 is stimulated by 1,25(OH)2D3 not only in the kidney but also in many of its target tissues, including bone, the inhibitory effect of 24,25(OH)2D3 on osteoclastic bone resorption may play a role in the local modulation of the actions of osteotropic hormones in bone.  相似文献   

5.
Several studies have demonstrated that connexin 43 (Cx43) mediates signals important for osteoblast function and osteogenesis. The role of gap junctional communication in bone resorption is less clear. We have investigated the expression of Cx43 mRNA in osteoclasts and bone resorption cultures and furthermore, the functional importance of gap junctional communication in bone resorption. RT-PCR analysis demonstrated Cx43 mRNA expression in mouse bone marrow cultures and in osteoclasts microisolated from the marrow cultures. Cx43 mRNA was also expressed in bone resorption cultures with osteoclasts and osteoblasts/stromal cells incubated for 48h on devitalized bone slices. An up-regulation of Cx43 mRNA was detected in parathyroid (PTH)-stimulated (0.1 nM) bone resorption. Two inhibitors of gap junction communication, 18alpha-glycyrrhetinic acid (30 microM) and oleamide (100 microM), significantly inhibited PTH- and 1,25-(OH)(2)D(3)-stimulated osteoclastic pit formation. In conclusion, our data indicate a functional role for gap junction communication in bone resorption.  相似文献   

6.
The primary and specific function of the osteoclast is the resorption of bone. We have applied this criterion, and a monoclonal antibody that binds specifically to osteoclasts, to cultures of tissues that may contain osteoclastic precursors. Bone marrow and spleen cells were incubated for up to 4 weeks in the presence or absence of parathyroid hormone, interleukin 1, or 1,25(OH)2 vitamin D3, on plastic coverslips or slices of devitalised bone. Osteoclasts (as judged by the presence of resorption cavities and the appearance of monoclonal antibody-positive cells) did not develop in cultures incubated without added hormones, nor in cultures containing parathyroid hormone or interleukin 1, but were regularly observed when bone marrow cells were incubated with 1,25(OH)2 vitamin D3. Although multinucleate giant cells were common after incubation, especially in the presence 1,25(OH)2 vitamin D3, monoclonal antibody bound not to these cells but to a minor and distinctive population of mononuclear cells and cells of low multinuclearity. We found no excavations and no monoclonal antibody-positive cells after incubation of peritoneal macrophages with 1,25(OH)2D3. These results provide direct evidence of osteoclastic function arising in cultures of haemopoietic tissues.  相似文献   

7.
Osteoclasts are derived from hemopoietic precursors in the marrow. Their differentiation pathway is still underfined, but an important role was obserned for the marrow micrienvironment in the regulation of osteoclasto genesis. various marrow stromal cell subtypes were used to study their possible role in the formation of osteoclasts from myeloblast (M1) cells. Interactions between M1 cell and the 14F1.1 endothelial-adipocyte stromal cell line were demonstrated in a coculture model. M1 cells attached to the adherent layer of 14F1.1 cells and formed distinct focireminiscente of “cobblestone areas.” Follwing these inteactions, M1 Cells developed specific enzymatic activites and became multinucleated. Both monouclear M1 cells became positive to tartrate-resistant acid phosphatase (TRaP) and ATPase, a feature charactreistic of osteoclasts, and were also responsive to calcitonin. Furthermore, they attached to mineralized bone particles and their membrane changed into a ruffled border at the zone of interaction with the bone matrix. We thus demonstrated that marrow endothelial-adipocytes may play a role in regulating the differentiation of myeloblast into osteoclasts.  相似文献   

8.
Osteoclasts (OCs), which form by fusion of hematopoietic precursor cells, are typically present in large numbers in giant cell tumors of bone (GCTBs). These tumors may, therefore, contain cells which secrete factors that stimulate recruitment and differentiation of OC precursors. Multinucleated cells resembling OCs also form in cultures of human cord blood monocytes (CBMs) stimulated by 1.25 dihydroxyvitamin D3, but these cells lack the ability to form bone resorption pits, the defining functional characteristic of mature OCs. CBMs may thus require additional stimulation to form OCs; we therefore investigated whether GCTBs are a source of such a stimulus. CBMs were stimulated in long term (21 day) culture by medium conditioned by explants of GCTBs; media collected within 15 days of explant (early-CM) and after 15 days (late-CM) were employed. We also cocultured CBMs with primary GCTB-derived stromal cells as well as immortalized bone marrow stroma-derived cells. CBMs stimulated by early-CM formed resorption pits on cortical bone slices; however, stimulation by late-CM resulted in virtually no resorption. Both early-CM and late-CM increased CBM proliferation, but not the proportion of vitronectin receptor positive or multinucleated cells. Coculture of CBMs with stromal cells of GCTBs or bone marrow did not result in bone resorption, although these stromal cells (most expressing alkaline phosphatase but progressively losing parathyroid hormone receptor expression) expressed mRNA for cytokines involved in OC differentiation, including macrophage-CSF, granulocyte-macrophage-CSF, IL-11, IL-6, and stem cell factor. Our results indicate that CBMs are capable of terminal OC differentiation in vitro, a process requiring 1,25 dihydroxyvitamin D3 as well as diffusible factor(s) which can be derived from GCTB. Stromal cells of GCTB may produce such factors in vivo, but do not support OC differentiation in vitro, possibly through phenotypic instability in culture. © 1996 Wiley-Liss, Inc.  相似文献   

9.
This paper presents literature and author's own data demonstrating that bone marrow contains determined osteogenic precursor cells with high potential to differentiation. They are stem cells of the bone and belong to the stromal cell line of the bone marrow which is histogenetically independent of hemopoietic cells. The paper presents detailed analysis of bone marrow stromal cells (CFUf) as well as of their osteogenic properties and requirements in growth factors. In conclusion mutual growth-stimulating interactions in the system of hemopoietic stromal cells are reviewed.  相似文献   

10.
11.
Throughout life, bone is remodelled in a dynamic process which results in a balance between bone formation by osteoblasts and bone resorption by osteoclasts. It is now clearly established that osteoblasts/stromal cells are crucial for differentiation of osteoclasts, through a mechanism involving cell-to-cell contact. However, the possible involvement of osteoblasts and stromal cells in the survival of osteoclasts has not yet been clearly demonstrated. In this study, we assessed the influence of cellular microenvironment, especially osteoblasts, on the osteoclast survival. Our results have shown significant differences in osteoclastic survival between unfractionated bone cells and pure osteoclasts. Furthermore, we have shown that addition of 1.25(OH)2D3 to unfractionated bone cells resulted in a dose-dependent increase in osteoclast survival. Finally, we have shown that a conditioned medium obtained from rat osteoblastic cells cultured with calcitriol was able to increase significantly survival of pure osteoclasts. Taken together, these results strongly suggest that osteoblastic cells present in the bone microenvironment might play a role in the osteoclastic survival by producing soluble factor which modulate osteoclast apoptosis.  相似文献   

12.
The functional capacities of stromal cell lines to support stem cell activity are heterogeneous and the mechanism of how they support bone marrow cultures remains unclear. Recently, we reported a strategy of functional analysis in which a genetic approach is combined with phenotype-based complementation screening to search for a novel secreted growth factor from mouse bone marrow stroma called ShIF that supported proliferation of bone marrow cells. To investigate the role of stromal cells in hemopoiesis, we extended this strategy to search for stroma-derived proteins that induce cell proliferation by establishing stroma-dependent Ba/F3 mutants of three stroma cell lines from two mouse tissues. Seven stroma-dependent Ba/F3 mutants were used as responder cells to identify cDNAs from stroma cell lines whose products supported proliferation not only to the mutant cells but also to hemopoietic progenitor cells in vitro.  相似文献   

13.
Atp6v0a3 gene encodes for two alternative products, Tirc7 and a3 proteins, which are differentially expressed in activated T cells and resorbing osteoclasts, respectively. Tirc7 plays a central role in T cell activation, while a3 protein is critical for osteoclast-mediated bone matrix resorption. Based on the large body of evidences documenting the relationships between T cells and osteoclasts, we hypothesized that the extracellular C-terminus of Tirc7 protein could directly interact with osteoclast precursor cells. To address this issue, we performed the molecular cloning of a mouse Atp6v0a3 cDNA segment encoding the last 40 amino acids of Tirc7 protein, and we used this peptide as a ligand added to mouse osteoclast precursor cells. We evidenced that Tirc7-Cter peptide induced the differentiation of RAW264.7 cells into osteoclast-like cells, stimulated an autocrine/paracrine regulatory loop potentially involved in osteoclastic differentiation control, and strongly up-regulated F4/80 protein expression within multinucleated osteoclast-like cells. Using a mouse bone marrow-derived CD11b(+) cell line, or total bone marrow primary cells, we observed that similarly to Rankl, Tirc7-Cter peptide induced the formation of TRACP-positive large multinucleated cells. At last, using mouse primary monocytes purified from total bone marrow, we determined that Tirc7-Cter peptide induced the appearance of small multinucleated cells (3-4 nuclei), devoid of resorbing activity, and which displayed modulations of dendritic cell marker genes expression. In conclusion, we report for the first time on biological effects mediated by a peptide corresponding to the C-terminus of Tirc7 protein, which interfere with monocytic differentiation pathways.  相似文献   

14.
R848, also known as resiquimod, acts as a ligand for toll-like receptor 7 (TLR7) and activates immune cells. In this study, we examined the effects of R848 on differentiation, survival, and bone-resorbing function of osteoclasts. R848 inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) and human peripheral blood-derived monocytes induced by receptor activator of NF-κB ligand in a dose-dependent manner. In addition, it inhibited mouse osteoclast differentiation induced in cocultures of bone marrow cells and osteoblasts in the presence of dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. However, R848 did not affect the survival or bone-resorbing activity of mouse mature osteoclasts. R848 also upregulated the mRNA expression levels of interleukin (IL)-6, IL-12, interferon (IFN)-γ, and inducible nitric oxide synthase in mouse BMMs expressing TLR7. IFN-β was consistently expressed in the BMMs and addition of neutralizing antibodies against IFN-β to the cultures partially recovered osteoclast differentiation inhibited by R848. These results suggest that R848 targets osteoclast precursors and inhibits their differentiation into osteoclasts via TLR7.  相似文献   

15.
During bone loss, osteoblast population can be replaced by adipose tissue. This apparent reciprocal relationship between decreased bone density and increased fat formation can be explained by an imbalance in the production of bone-forming and fat-forming cells in the marrow cavity. Thus, osteoblast and adipocyte pathways seem more closely and inversely related. In the present study, we investigated the effects of dexamethasone (dex) and calcitriol [1,25(OH)(2)D(3)] on proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures. Stromal cells were grown in primoculture in presence of dex and subcultivated in presence of dex and/or 1,25(OH)(2)D(3). Total cell proliferation, osteoblast and adipocyte-cells number, and -mRNA specific markers were used to study the effects of hormonal treatment on stromal cells. Total cell proliferation was stimulated by dex and inhibited by 1,25(OH)(2)D(3). Dex increased osteoblast and adipocyte cell population whereas calcitriol decreased bone-forming cell number and increased fat cell population. The presence of both hormones led to a strong decrease in osteoblastic cells and to a strong increase in adipocytic cell number. Dex induced mRNA osteoblastic markers expression like bone sialoprotein (BSP) and osteocalcin (OC) and an adipocyte marker expression, the fatty acid binding protein aP2. Calcitriol decreased the dex-induced BSP expression but stimulated slightly OC and aP2 mRNA. The effects of both hormones was to increase strongly OC and aP2 mRNA. These results support that, in rat bone marrow, adipocyte proliferation and differentiation are stimulated by glucocorticoids and calcitriol which act synergically, whereas osteoblastic cell proliferation and differentiation are increased by dex and inhibited by 1,25(OH)(2)D(3).  相似文献   

16.
Osteolytic lesions are rapidly progressive during the terminal stages of myeloma, and the bone pain or bone fracture that occurs at these lesions decreases the patients’ quality of life to a notable degree. In relation to the etiology of this bone destruction, it has been reported recently that MIP-1α, produced in large amounts in myeloma patients, acts indirectly on osteoclastic precursor cells, and activates osteoclasts by way of bone-marrow stromal cells or osteoblasts, although the details of this process remain obscure. In the present study, our group investigated the mechanism by which RANKL expression is induced by MIP-1α and the effects of MIP-1α on the activation of osteoclasts. RANKL mRNA and RANKL protein expressions increased in both ST2 cells and MC3T3–E1 cells in a MIP-1α concentration-dependent manner. RANKL mRNA expression began to increase at 1 h after the addition of MIP-1α; the increase became remarkable at 2 h, and continuous expression was observed subsequently. Both ST2 and MC3T3-E1 cells showed similar levels of increased RANKL protein expression at 1, 2, and 3 days after the addition of MIP-1α. After the addition of MIP-1α, the amount of phosphorylated ERK1/2 and Akt protein expressions showed an increase, as compared to the corresponding amount in the control group. On the other hand, the amount of phosphorylated p38MAPK protein expression showed a decrease from the amount in the control group after the addition of MIP-1α. U0126 (a MEK1/2 inhibitor) or LY294002 (a PI3K inhibitor) was added to ST2 and MC3T3-E1 cells, and was found to inhibit RANKL mRNA and RANKL protein expression in these cells. When SB203580, a p38MAPK inhibitor, was added, RANKL mRNA and RANKL protein expression were increased in these cells. MIP-1α was found to promote osteoclastic differentiation of C7 cells, an osteoclastic precursor cell line, in a MIP-1α concentration-dependent manner. MIP-1α promoted differentiation into osteoclasts more extensively in C7 cells incubated together with ST2 and MC3T3-E1 cells than in C7 cells incubated alone. These results suggested that MIP-1α directly acts on the osteoclastic precursor cells and induces osteoclastic differentiation. This substance also indirectly induces osteoclastic differentiation through the promotion of RANKL expression in bone-marrow stromal cells and osteoblasts. The findings of this investigation suggested that activation of the MEK/ERK and the PI3K/Akt pathways and inhibition of p38MAPK pathway were involved in RANKL expression induced by MIP-1α in bone-marrow stromal cells and osteoblasts. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.  相似文献   

17.
IL-3, a cytokine with hematopoietic differentiating capability, induced murine bone marrow cells to differentiate into cells resembling osteoclasts. The cells resulting from treatment with IL-3 were multi-nucleated and demonstrated tartrate-resistant acid-phosphatase activity, as do resident osteoclasts found in bone. IL-3-induced osteoclast-like cell development in the absence of serum-derived vitamin D metabolites, and a mAb that inhibited IL-3-induced proliferation of an addicted cell line also inhibited the development of osteoclasts in the presence of IL-3. The same Ab had no effect on 1 alpha, 25-dihydroxyvitamin D3-induced differentiation of osteoclasts. This newly described function of IL-3 may indicate a role for activated T cells in the bone resorption seen with rheumatoid arthritis.  相似文献   

18.
19.
The cells of bone are of two lineages, the osteoblasts arising from pluripotential mesenchymal cells and osteoclasts from hemopoietic precursors of the monocyte-macrophage series. Resorption of bone by the multinucleate osteoclast requires the generation of new osteoclastsw and their activation. Many hormones and cytokines are able to promote bone resorption by influencing these processes, but they achieve this without acting directly on osteoclastws. Most evidence indicates that their actions are mediated by cells of the osteoblast lineage. Evidence for hormone-and cytokine-induced activation of osteoclasts requiring the mediation of osteoblasts comes from studies of rsorption by isolated osteoclasts. However, consistent evidence for a spiceific “activating factor” is lacking, and the argument is presented that the isolated osteoclast resorption assays have not been shown convincingly to be assays of osteoclast activation. The view is presented that osteoblast-mediated osteoclast activation is the result of several events in the microenvironment without necessarily requiring the existence of a spicific, essential osteoclast activator. On the other hand, a specific promoter of osteoclast differentiation does seem likely to be a product of cells of the stromal/osteoblast series. Evidence in facour of this comes from studies of osteoclast generation in co-cultures of osteoblast/stromal cells with hemopoietic cells. Conflicting view, maintaining that osteoclasts can develop from hemooietic cells without stromal intervention, might be explaind by varying criteria used in identification of osteoclasts. Osteoblastic and osteoclastic renewal, and the interactions of these lineages, are central to the process of bone remodeling.  相似文献   

20.
Stimulation of osteoclastic bone resorption by hydrogen peroxide.   总被引:8,自引:0,他引:8  
The molecular mechanisms underlying the pathophysiology of bone destruction still remain poorly understood. We have found that hydrogen peroxide (H2O2), a reactive oxygen species (ROS), is a potent stimulator of osteoclastic bone resorption and cell motility. A marked enhancement of bone resorption was noted when rat osteoclasts, cultured on devitalised bovine cortical bone, were exposed to 10 nM [H2O2]. Apart from exposing osteoclasts to a low extracellular pH, which is known to enhance osteoclastic bone resorption, we provide first evidence for a molecule that stimulates osteoclastic bone resorption in osteoclast cultures that do not respond to parathyroid hormone and 1, 25 dihydroxyvitamin D3. We envisage that both basic biological and practical clinical implications may eventually follow from these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号