首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

2.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

3.
Schmidt  Olaf  Scrimgeour  Charles M. 《Plant and Soil》2001,229(2):197-202
The use of 13C isotope tracer techniques in terrestrial ecology has been restricted by the technical requirements and high costs associated with the production of 13C enriched plant material by 13CO2 release in labelling chambers. We describe a novel, simple and relatively inexpensive method for the small-scale production of 13C and 15N labelled plant material. The method is based on foliar feeding of plants with a urea solution (97 atom% 13C, 2 atom% 15N) by daily misting. Maize was grown in a greenhouse in a compost–soil mixture and enclosed in clear polythene bags between urea applications. Final enrichment in 27 d old maize shoots was 211 13C (1.34 atom% 13C) and 434 15N (0.52 atom% 15N). Enrichments of hot-water extractable fractions (289 13C, 469 15N) were only slightly higher than those observed in plant bulk material, which suggests that daily urea applications ensured fairly uniform labelling of different biochemical fractions and plant tissues. Recovery of applied excess 13C and 15N in plant shoots was 22% and 42%, respectively. Roots were less enriched (21 13C and 277 15N), but no attempts were made to recover roots quantitatively.  相似文献   

4.
Summary The mean stable-carbon isotope ratios (13C) for polar bear (Ursus maritimus) tissues (bone collagen –15.7, muscle –17.7, fat –24.7) were close to those of the same tissues from ringed seals (Phoca hispida) (–16.2, –18.1, and –26.1, respectively), which feed exclusively from the marine food chain. The 13C values for 4 species of fruits to which polar bears have access when on land in summer ranged from –27.8 to –26.2, typical of terrestrial plants in the Arctic. An animal's 13C signature reflects closely the 13C signature of it's food. Accordingly, the amount of food that polar bears consume from terrestrial food webs appears negligible, even though some bears spend 1/3 or more of each year on land during the seasons of greatest primary productivity.  相似文献   

5.
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in 13C (–26.11 and –22.36, respectively). Surface sediment and suspended POM in plume water exhibited low 13C (–24.38 and –24.70, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in 15N (mean 4.30 to 9.77) and 13C (mean –23.81 to –18.47), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean 13C –23.71) and subsurface (mean 13C –23.81) deposit-feeding polychaetes were particularly 13C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, 15N (mean 9.42 to 10.93) and 13C (mean –19.95 to –17.69) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the 13C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean 13C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest 13C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.  相似文献   

6.
Summary Stable carbon isotope ratio analysis is a powerful technique in tracing ecosystem carbon flows, especially those between primary and secondary producers. The distinctive 13C/12C ratios of plant species tend to pass along the food chain with little further fractionation, hence the stable carbon isotope composition of an animal is an important clue to what it has eaten. We compared the stable carbon isotope composition of plants and insects in an old field in Georgia. Of the dominant plants in the old field, 6 were C4 species and had 13C1 values of-10.9 to 12.9, and 7 were C3 species with values of-27.3 to-29.1. Insects known to be feeding on only one plant species had 13C values within 1 of the isotopic composition of the plant. Wasp larvae parasitizing two insect species had 13C values 1.3 and 1.7 higher than that of the food plant. A variety of insects of unknown food habits collected on monospecific and mixed species plant stands in the old field had 13C values ranging from-10.1 to-30.0. Two species of leafhopper and a grasshopper had isotopic compositions within the range of C4 plant values; a tortoise beetle and a lace bug had isotopic compositions within C3 plant values. Other insects had intermediate 13C values, suggesting a mixed diet composed of both C3 and C4 plants. The carbon isotopic ratios of field collected insects appears to be a useful qualitative indicator of their feeding preference.  相似文献   

7.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

8.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

9.
The clearing of tropical forest for pasture leads to important changes in soil organic carbon (C) stocks and cycling patterns. We used the naturally occurring distribution of13C in soil organic matter (SOM) to examine the roles of forest- and pasture-derived organic matter in the carbon balance in the soils of 3- to 81-year-old pastures created following deforestation in the western Brazilian Amazon Basin state of Rondônia. Different 13C values of C3 forest-derived C (-28) and C4 pasture-derived C (-13) allowed determination of the origin of total soil C and soil respiration. The 13C of total soil increased steadily across ecosystems from -27.8 in the forest to -15.8 in the 81-year-old pasture and indicated a replacement of forest-derived C with pasture-derived C. The 13C of respired CO2 increased more rapidly from -26.5 in the forest to -17 in the 3- to 13-year-old pastures and indicated a faster shift in the origin of more labile SOM. In 3-year-old pasture, soil C derived from pasture grasses made up 69% of respired C but only 17% of total soil C in the top 10 cm. Soils of pastures 5 years old and older had higher total C stocks to 30 cm than the original forest. This occurred because pasture-derived C in soil organic matter increased more rapidly than forest-derived C was lost. The increase of pasture-derived C in soils of young pastures suggests that C inputs derived from pasture grasses play a critical role in development of soil C stocks in addition to fueling microbial respiration. Management practices that promote high grass production will likely result in greater inputs of grass-derived C to pasture soils and will be important for maintaining tropical pasture soil C stocks.  相似文献   

10.
Isotope analysis of the biochemical fractions isolated quantitatively from young and mature leaves of Bryophyllum daigremontianum Berger have been carried out before and after a dark period of accumulation of organic acids. The mature leaf is enriched in 13C compared to the young leaf. The 13C values of the different leaf constituents vary between the 13C values of C4 plants (-11) and those of C3 plants (-27). During the dark period, the two types of leaves store organic acids with 13C values of -15 and lose insoluble sugars, including starch with a 13C value of -12. Furthermore, young leaves store phosphorylated compounds with 13C values of -11 and lose weakly polymerised sugars with 13C values of -18. These results led to the formulation of a hypothesis of the origin of the two substrates of -carboxylation: phosphoenolpyruvate arises from the glycolytic breakdown of the insoluble sugars rich in 13C, and the major portion of the CO2 is the result of the complete breakdown (respiration) of the soluble sugars rich in 12C. The existence of two independent sugar pools leads to the assumption that there are two separate glycolytic pathways. The 13C enrichment of the stored products of the young leaves in the day seems to be the result of a weak discrimination for 13C by ribulose diphosphate carboxylase, which reassimilates to a great extent the CO2 released from malate accumulated in the night.Abbreviations CAM crassulacean acid metabolism - C3 metabolism metabolism with primary carbon fixed by the Calvin and Benson pathway - C4 metabolism metabolism with primary carbon fixed by the Hatch and Slack pathway - 13C() (Rsample-RPDB) 103/RPDB where PDB=Pee Dee belemnite (belemite from the Pee Dee formation South Carolina) and R=13C/12C - NAD-MDH(EC1.1.1.37) NAD-malate dehydrogenase - NADP-ME (EC1.1.1.40) NADP-malic enzyme - PEP phosphoenolpyruvate - PEPC (EC4.1.1.31) PEP carboxylase - PGA phosphoglyceric acid - Py.di-PK(EC2.7.9.1) pyruvate, Pi-dikinase - RuDP ribulose diphosphate - RuDPC (EC4.1.1.39) RuDP carboxylase  相似文献   

11.
Despite theories of large-scale movement and assimilation of carbon in estuaries, recent evidence suggests that in some estuaries much more limited exchange occurs. We measured the fine-scale movement and assimilation of carbon by resident macroinvertebrates between adjacent saltmarsh and mangrove habitats in an Australian estuary using 13C analysis of animals at different distances into adjacent patches of habitat. 13C values of crabs (Parasesarma erythrodactyla –15.7 ± 0.1, Australoplax tridentata –14.7 ± 0.1) and slugs (Onchidina australis –16.2 ± 0.3) in saltmarsh closely matched that of the salt couch grass Sporobolus virginicus (–15.5 ± 0.1). In mangroves, 13C values of crabs (P. erythrodactyla –22.0 ± 0.2, A. tridentata –19.2 ± 0.3) and slugs (–19.7 ± 0.3) were enriched relative to those of mangroves (–27.9 ± 0.2) but were more similar to those of microphytobenthos (–23.7 ± 0.3). The 13C values of animals across the saltmarsh-mangrove interface fitted a sigmoidal curve, with a transition zone of rapidly changing values at the saltmarsh-mangrove boundary. The width of this transition indicated that the movement and assimilation of carbon is limited to between 5 and 7 m. The 13C values of crabs and slugs, especially those in saltmarsh habitat, clearly indicate that the movement and assimilation of carbon between adjacent saltmarsh and mangrove habitat is restricted to just a few metres, although some contribution from unmeasured sources elsewhere in the estuary is possible. Such evidence demonstrating the extent of carbon movement and assimilation by animals in estuarine habitats is useful in determining the spatial arrangement of habitats needed in marine protected areas to capture food web processes.  相似文献   

12.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

13.
E. Medina  P. Minchin 《Oecologia》1980,45(3):377-378
Summary The contribution of soil respiration to the photosynthesis of the shade flora in the Amazon forest was evaluated by measuring the 13C values of leaves collected at different levels in two forest communities. Canopy leaves have an average 13C of-30.5 in the podsol forest and-28.7 in the laterite forest. Leaves from plants in the lower forest strata have a significantly lower value of-35.2 in the podsol forest and-34.3 in the laterite forest.Mailing address of the first author: Before May 31, 1980: Department of Biological Sciences, Stanford University, Stanford, California 94305 USA. After May 31: Centro de Ecologia, IVIC Aptdo. 1827. Caracas, Venezuela  相似文献   

14.
Summary The 13C values of submerged aquatic plants from contrasting but relatively defined habitats, and the 13C values of emergent, floating and submerged leaves of dimorphic aquatic plants, were measured. In many instances the 13C values of dissolved inorganic carbon in the water were also measured. Plant 13C values in the vicinity of-40 to-50 were found in rapidly flowing spring waters with carbonate 13C values of-16 to-21, consistent with the notion that species such as Fontinalis antipyretica almost exclusively assimilate free CO2 via RuP2 carboxylase. Plant 13C values in the vicinity of-10 to-15 in sluggish water with carbonate 13C values of about-5 were observed, consistent with the notion that boundary layer diffusion and/or HCO3 - uptake may determine the 13C value of submerged aquatic plants in these circumstances. Comparisons of 13C values of the same or related species growing in waters of similar carbonate 13C value but different flow rates confirmed this view; more negative 13C values were frequently associated with plants in fast moving water. In Britain, but not in Finland, the 13C values of submerged leaves of dimorphic plants were almost invariably more negative than in aerial leaves. The 13C value of carbonate from chalk streams and in acid springs indicate substantial inputs of respiratory CO2, as opposed to atmospheric carbon. The contributions of these variations in 13C of the carbon source, and of isotope fractionation in diffusion, to the 13C value of submerged parts of dimorphic plants is discussed.  相似文献   

15.
Summary Organic carbon-rich sediments from the surface of fresh, intermediate, brackish and salt marshes of coastal Louisiana were sampled and analyzed for their 13C content. The average 13C from all sites within each wetland type was-27.8,-22.1,-16.9, and-16.2, for fresh, intermediate, brackish and salt marshes, respectively. Means from the fresh, intermediate and brackish marshes were significantly different at the 0.01 level. A mixing model using measurements of standing crop and 13C of plant carbon was applied to estimate the contribution of each species to the sedimentary carbon at four of the marsh sites. Sedimentary 13C values generally reflected that of the dominant species present at each site. Brackish and salt marsh samples, however, showed a negative shift of 13C with respect to whole plant carbon. We interpret these depeleted 13C values to be the result of more extensive organic matter decomposition and selective preservation of 13C-depleted refractory components in sediments from saline sites. The results of this study suggest that 13C composition of sedimentary carbon may offer a valuable tool for distinguishing subtle changes in paleohydrology of wetlands resulting from relative sea level changes.  相似文献   

16.
We evaluated the effects of ecosystem composition and structure (species richness and diversity, cover and spatial attributes of vegetation), abiotic factors (climate and topographical features) and the condition of the bare-ground areas (evaluated using soil-surface indicators) on the performance of Stipa tenacissima [evaluated using foliar 13C, 15N, nitrogen concentration and the carbon-to-nitrogen (C:N) ratio] in 15 steppes of SE Spain. Foliar 13C values of S. tenacissima showed a low degree of variation in the studied steppes, with average values ranging from –24.1 to –22.9. Higher variation was found in the 15N values, which ranged from –5.5 to –2.4. The nitrogen concentration and the C:N ratio varied between 5.0 and 8.0 mg g–1, and between 55.4 and 85.3, respectively. The 13C values became less negative with increasing spatial aggregation of perennial vegetation, while the C:N values increased with increasing perennial vegetation cover. The 15N values became more negative with increasing infiltration in the bare-ground areas, but the nitrogen concentration was not related to any of the environmental variables measured. Our results suggest that the relative importance of ecosystem structure and soil-surface conditions in the bare ground areas was higher than that of abiotic factors as determinants of the performance of S. tenacissima. The results also show that even subtle changes in these ecosystem features may lead to modifications in plant performance in semiarid S. tenacissima steppes, and thus to modifications in the associated ecosystem functions in the mid- to long-term.  相似文献   

17.
Carbon isotopic composition was used to assess the linkage between three different potential sources of energy and the community in the shallow coastal zone of Martel Inlet. Stable 13C ratios ranged from –28.7 for the zooplankton plus phytoplankton to –14.4 for the grazer Nacella concinna. Microphytobenthos (–16.7) was considerably more enriched in 13C than were suspended particulate matter (SPM) (–25.6) and macroalgal fragments (–23.6 and –21.1), indicating that stable carbon isotope analysis might be used to discern the relative contribution of these sources of primary production. There is a benthic-pelagic coupling between plankton, benthic suspensivores, the ophiuroid Ophionotus victoriae and the icefish Chaenocephalus aceratus. Benthic grazers such as N. concinna, deposit feeders such as Yoldia eightsi and the nematodes showed a tight coupling with the microphytobenthos and the sediment. Some omnivorous/depositivorous polychaetes, echinoids, amphipods and the fish Notothenia coriiceps showed values close to the ratios of the macroalgal fragments. Benthic carnivores and/or scavengers were generally enriched over suspensivores and depleted in relation to microphytobenthos grazers, showing a considerable overlap in 13C values throughout the food web, without any clear coupling with the primary sources of organic matter. The trophic web in the shallow zone of high benthic production and under seasonal ice cover in the Antarctic is more complex than it is in shelf areas, where SPM is the main food source. The soft-bottom community in the shallow zone of Martel Inlet is enriched in 13C due to the significant input of carbon from the microphytobenthos and macroalgal fragments.  相似文献   

18.
Cernusak LA  Pate JS  Farquhar GD 《Oecologia》2004,139(2):199-213
We measured leaf dry matter 18O and 13C in parasitic plants and their hosts growing in southwestern Australia. Parasite/host pairs included two mistletoe species, three species of holoparasites, and five species of root hemiparasites. Among these parasite functional types, significant variation was observed in parasite/host isotopic differences for both 18O (P<0.0001, n=65) and 13C (P<0.0001, n=64). Mistletoes were depleted in both 18O and 13C compared to their hosts; parasite/host differences were –4.0 for 18O (P<0.0001) and –1.9 for 13C (P<0.0001). The lower 18O in mistletoe leaf dry matter compared to their hosts is consistent with the frequently observed high transpiration rates of these parasites. Root hemiparasites were also depleted in 18O and 13C compared to their hosts, but not to the same extent as mistletoes; parasite/host differences were –1.0 for 18O (P=0.04) and –1.2 for 13C (P=0.0006). In contrast to mistletoes and root hemiparasites, holoparasites were enriched in both 18O and 13C compared to their hosts; parasite/host differences were +3.0 for 18O (P<0.0001) and +1.5 for 13C (P=0.02). The enrichment in 18O for holoparasite dry matter did not result from more enriched tissue water; holoparasite tissue water 18O was less than host leaf water 18O by a difference of –3.8 when sampled at midday (P=0.0003). Enrichment of holoparasites in 13C compared to their hosts is consistent with a generally observed pattern of enrichment in heterotrophic plant tissues. Results provide insights into the ecology of parasitic plants in southwestern Australia; additionally, they provide a context for the formulation of specific hypotheses aimed at elucidating mechanisms underlying isotopic variations among plants.  相似文献   

19.
We examined the effects of fertilizer application, especially the effects of fertigation and types of fertilizer (inorganic and organic) on yields and 15N and 13C values of tomato (Lycopersicon esculentum Mill. cv. Saturn). Fertigation is a method in which an appropriate diluted liquid fertilizer is applied to the plants each time they are drip-irrigated. We developed a method of organic fertigation using corn steep liquor (CSL) as the liquid fertilizer, because it is an industrial byproduct of cornstarch manufacture and can be used very effectively. We compared fruit yield, mineral content, 15N value, and 13C value of tomatoes grown under three different fertilizer treatments, basal dressing: basal dressing with granular chemical fertilizer; inorganic fertigation: fertigation with liquid chemical fertilizer; and organic fertigation: fertigaion with CSL. Mineral contents of tomatoes grown with basal dressing were generally lower than those grown under either fertigation treatment. These results indicated that yields and mineral contents were influenced more by the method of fertilizer application than by whether the fertilizers were inorganic or organic. There were, however, significant differences in the 15N values of tomato fruits grown under different types of fertilizer applications, especially between inorganic and organic fertilizers. The 15N value of the chemical fertilizer used for basal dressing was 0.81 ± 0.45{}, that of the chemical fertilizer for fertigation was 0.00 ± 0.04{}, and that of CSL was 8.50 ± 0.71{}. The 15N values of the soils reflected the 15N values of the fertilizers. Moreover, the 15N values of the fruits corresponded to the 15N values of the applied fertilizers. The 15N values were 3.18 ± 1.34{} in the fruits grown with a basal dressing of chemical fertilizer, 0.30 ± 0.61 in those grown under inorganic fertigation, and 7.09 ± 0.68 in those grown under organic fertigation. On the other hand, although the 13C values in the soil also reflected the 13C values of the applied fertilizers, there was no significant difference in the 13C values of fruits among the different treatments. In conclusion, because the 15N values of fertilizers correlated well with those of the fruits, it may be possible to use 15N values as an indicator of organic products.  相似文献   

20.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号