首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Kang SU  Shin YS  Hwang HS  Baek SJ  Lee SH  Kim CH 《PloS one》2012,7(4):e34988
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA.  相似文献   

2.
3.
4.
Non-steroidal anti-inflammatory drugs (NSAIDs) activated gene (NAG-1) is a newly identified member of the transforming growth factor-β (TGF-β) superfamily. Members of the TGF-β family are multifunctional growth factors, and the nature of their effects depends on the cellular context and cell type. NAG-1 has antitumorigenic and proapoptotic activities in colon and gastric cancer cells lacking endogenous cyclooxgenase-2 (COX-2) expression. In contrast, COX-2 overexpression is related to antiapoptotic activity. The purpose of this study is to evaluate the proapoptotic activity of NAG-1 according to COX-2 expression and cell type. NAG-1 cDNA was transfected in SNU668 cells with endogenous COX-2 expression, SNU601 cells with forced COX-2 expression and Hep3B hepatocellular carcinoma cells. SNU668 cells with ectopic expression of NAG-1 showed markedly elevated subG1 population, induced death receptor-4 (DR-4) and DR-5, and revealed smaller active fragments of caspase-3. Forced COX-2 expression in SNU601 cells did not inhibit apoptosis caused by NAG-1 expression. Sulindac sulfide caused apoptosis, and induced expression of DR-5 and NAG-1 in Hep3B cells. However, Hep3B cells ectopically expressing NAG-1 did not cause apoptosis, and smaller active fragments of caspase-3 and an 85 kDa band of poly ADP-ribose polymerase (PARP) did not appear in the transfected cells, either. This study suggests that proapoptotic activity of NAG-1 is cell type specific and not related to COX-2 expression.  相似文献   

5.
This study aims to investigate the unclear molecular relationship involved in the activation of intrinsic pathway of apoptosis and NSAID-activated gene-1 (NAG-1) induction as a putative target in NSAIDs-mediated chemoprevention of colorectal cancer. Male Sprague-Dawley rats were administered with a colon-specific pro-carcinogen, 1,2-dimethylhydrazine dihydrochloride to achieve the early stages of colorectal cancer. Histopathological examination was performed for the analysis of neoplastic lesions while flow cytometry was performed for the relative quantification of intracellular reactive oxygen species (ROS), differential mitochondrial membrane potential (MMP or ΔΨ M), and apoptotic events. Various target biomolecules were analyzed either for their mRNA or protein expression profiles via RT-PCR and quantitative Real-Time PCR, or Western blotting and immunofluorescence, respectively. Enhanced gene as well as protein expression of pro-apoptotic agents was observed with the daily oral administration of two NSAIDs viz. Sulindac (cyclooxygenase (COX)-non-specific) and Celecoxib (a selective COX-2 inhibitor). A significant increase in early growth response-1 (EGR-1) protein expression and nuclear localization in NSAIDs co-administered animals may have positively regulated the expression of NAG-1 with a significant enhancement of intracellular ROS in turn decreasing the ΔΨ M to initiate apoptosis. In silico molecular docking analysis also showed that Sulindac and Celecoxib can block the active site pocket of B-cell lymphoma-extra large (Bcl-xL, anti-apoptotic transmembrane mitochondrial protein) which could be a putative mechanism followed by these NSAIDs to overcome anti-apoptotic properties of the molecule. NSAIDs-mediated up-regulation of EGR-1 and thereby NAG-1 along with implication of higher ROS load may positively regulate the intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer.  相似文献   

6.
Rottlerin, a selective inhibitor of novel isoforms of protein kinase C δ (PKC δ), has been shown to exert multiple effects on cancer cells, including inhibition of cell proliferation and migration. However, the molecular mechanisms responsible for these effects are not fully understood. We found that rottlerin dramatically induced non-steroidal anti-inflammatory drug activated gene-1 (NAG-1) expression in both p53 wild-type and p53-null cancer cell lines, suggesting that NAG-1 upregulation is a common response to rottlerin that occurs independently of p53 in multiple cell lines. Although rottlerin is known to inhibit PKC δ, PKC δ siRNA and overexpression of dominant-negative (DN)-PKC δ did not affect rottlerin-mediated induction of NAG-1. These results suggest that rottlerin induces NAG-1 upregulation via a PKC δ-independent pathway. We also observed that CHOP protein levels were significantly increased by rottlerin, but CHOP siRNA did not affect rottlerin-induced NAG-1 expression. In addition, we demonstrated the involvement of the mitogen-activated protein kinase (MAP kinase) signal transduction pathway in rottlerin-induced NAG-1 expression. Inhibitors of MEK (PD98059) and p38 MAP kinase (SB203580) prevented rottlerin-induced NAG-1 expression. Furthermore, we found that down-regulation of NAG-1 attenuated rottlerin-induced apoptosis. Collectively, the results of this study demonstrate, for the first time, that upregulation of NAG-1 contributes to rottlerin-induced apoptosis in cancer cells.  相似文献   

7.
Drug resistance frequently develops in tumors during chemotherapy. Therefore, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Here, we show that isochaihulactone (K8) enhanced paclitaxel-induced apoptotic death in human lung cancer cells, and the enhancing effect was related to increased NSAID-activated gene-1 (NAG-1) expression. CalcuSyn software was used to evaluate the synergistic interaction of K8 and paclitaxel on human lung cancer cells; the synergistic effect of K8 in combination with paclitaxel was increased more than either of these drugs alone. Furthermore, the activity of ERK1/2 was enhanced by the combination of K8 and paclitaxel, and an ERK1/2 inhibitor dramatically inhibited NAG-1 expression in human lung cancer cells. Therefore, this synergistic apoptotic effect in human lung cancer cells may be directly associated with K8-induced NAG-1 expression through ERK1/2 activation. Moreover, over-expression of NAG-1 enhanced K8/paclitaxel-induced apoptosis in human lung cancer cells. In addition, treatment of nude mice with K8 combined with paclitaxel induced phospho-ERK1/2 and NAG-1 expression in vivo. Targeting of NAG-1 signaling could enhance therapeutic efficacy in lung cancer. Our results reveal that activation of NAG-1 by K8 enhanced the therapeutic efficacy of paclitaxel in human lung cancer cells via the ERK1/2 signaling pathway.  相似文献   

8.
9.
10.
11.
Quercetin, a flavonoid molecule ubiquitously present in nature, has multiple effects on cancer cells, including the inhibition of cell proliferation and migration. However, the responsible molecular mechanisms are not fully understood. We found that quercetin induces the expression of NAG-1 (Non-steroidal anti-inflammatory drug activated gene-1), a TGF-β superfamily protein, during quercetin-induced apoptosis of HCT116 human colon carcinoma cells. Reporter assays using the luciferase constructs containing NAG-1 promoter region demonstrate that early growth response-1 (EGR-1) and p53 are required for quercetin-mediated activation of the NAG-1 promoter. Overexpression of NAG-1 enhanced the apoptotic effect of quercetin, but suppression of quercetin-induced NAG-1 expression by NAG-1 siRNA attenuated quercetin-induced apoptosis in HCT116 cells. Taken together, the present study demonstrates for the first time that quercetin induces apoptosis via NAG-1, providing a mechanistic basis for the apoptotic effect of quercetin in colon carcinoma cells.  相似文献   

12.
The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/AKT, which is involved in cell survival, proliferation, and growth, has become a major focus in targeting cancer therapeutics. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) was previously identified as a gene induced by several anti-tumorigenic compounds including nonsteroidal anti-inflammatory drugs, peroxisome proliferator-activated receptor gamma ligands, and dietary compounds. NAG-1 has been shown to exhibit anti-tumorigenic and/or pro-apoptotic activities in vivo and in vitro. In this report, we showed a PI3K/AKT/glycogen synthase kinase-3beta (GSK-3beta) pathway regulates NAG-1 expression in human colorectal cancer cells as assessed by the inhibition of PI3K, AKT, and GSK-3beta. PI3K inhibition by LY294002 showed an increase in NAG-1 protein and mRNA expression, and 1l-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (AKT inhibitor) also induced NAG-1 expression. LY294002 caused increased apoptosis, cell cycle, and cell growth arrest in HCT-116 cells. Inhibition of GSK-3beta, which is negatively regulated by AKT, using AR-A014418 and lithium chloride completely abolished LY294002-induced NAG-1 expression as well as the NAG-1 promoter activity. Furthermore, the down-regulation of GSK-3 gene using small interference RNA resulted in a decline of the NAG-1 expression in the presence of LY294002. These data suggest that expression of NAG-1 is regulated by PI3K/AKT/GSK-3beta pathway in HCT-116 cells and may provide a further understanding of the important role of PI3K/AKT/GSK-3beta pathway in tumorigenesis.  相似文献   

13.
PPARgamma ligands inhibit growth and induce apoptosis of various cancer cells. 4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation and induces differentiation or apoptosis in neoplastic cells. The aim of this work was to investigate the effects of PPARgamma ligands (rosiglitazone and 15-deoxy-prostaglandin J2 (15d-PGJ2)) and HNE, alone or in association, on proliferation, apoptosis, differentiation, and growth-related and apoptosis-related gene expression in colon cancer cells (CaCo-2 cells). PPARgamma ligands inhibited cell proliferation (IC50 was 37.47+/-6.6 microM, for 15d-PGJ2, and 170.34+/-20 microM for rosiglitazone). HNE (1 microM) inhibited cell growth by 70%. Apoptosis was induced by 15d-PGJ2 and HNE and, to a minor extent, rosiglitazone. Differentiation was induced by rosiglitazone and by 15d-PGJ2, but not by HNE. PPARgamma ligands inhibited c-myc expression. HNE induced a transitory increase in c-myc expression and a subsequent down-regulation. HNE induced p21 expression, whereas PPARgamma ligands did not. Expression of the bax gene was increased by HNE and 15d-PGJ2, but not by rosiglitazone. No synergism or antagonism was found between HNE and PPARgamma ligands. Both apoptosis and differentiation induction may be responsible for the inhibition of proliferation by PPARgamma ligands; apoptosis and c-myc and p21 expression seem to be involved in the inhibition of proliferation by HNE.  相似文献   

14.
15.
Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) is a divergent member of the transforming growth factor-beta (TGF-β) superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.  相似文献   

16.
Kuo PL  Lin TC  Lin CC 《Life sciences》2002,71(16):1879-1892
The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention.  相似文献   

17.
《Autophagy》2013,9(6):725-737
Areca (betel) chewing was tightly linked to oral tumorigenesis in Asians. Areca nut was a recently confirmed group I carcinogen and a popular addictive substance used by Asians. While, the pathogenetic impact of areca on oral epithelial cells was still unclear. This study investigated the association between the induction of autophagy by areca nut extract (ANE) and the molecular regulation underlying this induction in oral cancer cells. Oral cancer cells were treated with ANE to insight the signaling changes underlying phenotypic alterations. The NFκB activation and reactive oxygen species (ROS) genesis were induced by ANE and the NF-κB activation could be the basis of the ROS genesis. Furthermore, p38 activation and upregulation of MKP-1 phosphatase occurred following ANE treatment. These effects can be inhibited by ROS blockers. ANE treatment induced autophagy among oral cancer cells, which was characterized by LC3-II accumulation, genesis of autophagosomes and the appearance of EGFP-LC3 puncta. This induction was mediated through the activation of p38, MKP-1 and HIF-1α. Knockdown of ANE-modulated HIF-1α expression reduced autophagy. Blockage of ANE-induced autophagy increased the proportion of oral cancer cells undergoing apoptotic death. This study identified for the first time that ANE modulates a signaling cascade that induces HIF-1α expression in oral cancer cells. The eventual induction of autophagy was beneficial to cell survival from ANE-induced apoptosis.  相似文献   

18.
Limited clinical and experimental studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) may inhibit gastric cancer growth. However, the mechanisms involved are not completely understood and cannot be explained by COX-2 inhibition alone. MAPK signaling pathway is essential for cell proliferation, but the effect of NSAIDs on MAPK activity and phosphorylation in gastric cancer has never been studied. Since increased and unregulated cell proliferation and reduced cell apoptosis are important features of cancer growth, we studied whether NS-398, a selective COX-2 inhibitor and/ or indomethacin (IND), a non-selective NSAID: 1) inhibit gastric cancer cell proliferation, 2) whether this inhibition is mediated via MAPK (ERK2), and 3) whether NSAIDs enhance apoptosis in gastric cancer cells. Human gastric epithelial cells (MKN28) derived from gastric tubular adenocarcinoma were cultured and treated with either vehicle, IND (0.25-0.5mM) or NS-398 (50-100 microM) for 6, 16, 24 and 48h. Studies: 1) Cellular proliferation was determined by 3H-thymidine uptake. 2) MAPK activity was measured by incorporation of radiolabeled phosphate into myelin basic protein. 3) Apoptosis was evaluated using TUNEL assay. IND and NS-398 significantly inhibited the proliferation of MKN28 cells at 24h by 3.5 - 5 fold (p<0.002) and at 48h by 2.5 - 10 fold (p<0.02). Both NSAIDs also significantly inhibited ERK2 activity: IND >53% inhibition, NS-398, 100 microM >72% inhibition; all p<0.05. Both IND and NS-398 significantly increased apoptotic index. In conclusion, IND and NS-398 significantly inhibit proliferation and growth of human gastric cancer cell line MKN28. This effect is mediated by NSAID-induced inhibition of MAPK (ERK2) kinase signaling pathway, essential for cell proliferation. NSAIDs also increase apoptosis in MKN28 cells. In addition to inhibiting cyclooxygenase, NSAIDs inhibit phosphorylating enzymes--kinases essential for signaling cell proliferation.  相似文献   

19.
Lung cancer is the most common type of malignancy and one of the leading causes of cancer‐related deaths in the world. Non‐small cell lung carcinomas (NSCLC) account for 85% cases of lung cancer. Sanguinarine (SNG) is a benzophenanthridine alkaloid isolated from plants of the Papaveraceae family that possess diverse biological activities. SNG exhibits antitumor effects in several cancer cells. However, the effects of SAN on NSCLC proliferation, invasion, and migration and the mechanisms remain to be clarified. We showed that SNG concentration‐ and time‐dependently decreased the cell proliferation, viability, and induced a marked increase in cell death in A549 cells. SNG inhibited invasion and migration and induced S phase cell cycle arrest and apoptosis. SNG resulted in a significant increase of E‐cadherin expression and a marked decrease of the expression of N‐cadherin, Vimentin, Smad2/3, and Snail and the phosphorylation of Smad2. SNG increased Fas‐associated factor 1 (FAF1) expression and upregulation of FAF1 inhibited cell proliferation, invasion, and migration and induced cell cycle arrest and apoptosis in NSCLC cells. Knockdown of FAF1 suppressed SNG‐induced inhibition of cell proliferation, invasion, and migration and induction of cell cycle arrest and apoptosis in NSCLC cells. SNG also inhibited implanted tumor growth and increased FAF1 expression in tumors in vivo. Our findings highlight FAF1 as a novel therapeutic target and provide a new insight in the potential use of SNG for the inhibition of NSCLC.  相似文献   

20.
NSAID activated gene (NAG-1), a modulator of tumorigenesis   总被引:2,自引:0,他引:2  
The NSAID activated gene (NAG-1), a member of the TGF-beta superfamily, is involved in tumor progression and development. The over-expression of NAG-1 in cancer cells results in growth arrest and increase in apoptosis, suggesting that NAG-1 has anti-tumorigenic activity. This conclusion is further supported by results of experiments with transgenic mice that ubiquitously express human NAG-1. These transgenic mice are resistant to the development of intestinal tumors following treatment with azoxymethane or by introduction of a mutant APC gene. In contrast, other data suggest a pro-tumorigenic role for NAG-1, for example, high expression of NAG-1 is frequently observed in tumors. NAG-1 may be like other members of the TGF-beta superfamily, acting as a tumor suppressor in the early stages, but acting pro-tumorigenic at the later stages of tumor progression. The expression of NAG-1 can be increased by treatment with drugs and chemicals documented to prevent tumor formation and development. Most notable is the increase in NAG-1 expression by the inhibitors of cyclooxygenases that prevent human colorectal cancer development. The regulation of NAG-1 is complex, but these agents act through either p53 or EGR-1 related pathways. In addition, an increase in NAG-1 is observed in inhibition of the AKT/GSK-3beta pathway, suggesting NAG-1 alters cell survival. Thus, NAG-1 expression is regulated by tumor suppressor pathways and appears to modulate tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号