首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
The feasibility of utilizing rainbow trout, Oncorhynchus mykiss, as an alternative model for studying the inhibition of aromatase (CYP 19) was investigated. The suppression of estrogen-dependent tumors by aromatase inhibitors has been important in the treatment of breast cancer. Estrogens, estrogen precursors and xenoestrogens have been found to promote liver cancer in the trout model. A steroid, 4-hydroxy-4-androstene-3,17-dione (4-OHA), and non-steroids, aminoglutethimide (AG) and Letrozole (CGS 20267), all of which are known aromatase inhibitors in rats and humans, were examined in vitro for activity in trout ovarian microsomes. Aromatase activity was quantified as the release of 3H2O from the conversion of [3H]-4-androstene-3,17-dione to 17beta-estradiol and estrone. Trout ovarian microsomes exhibited activity between 39-60 fmol mg(-1) min(-1) with a calculated Vmax of 71.1 fmol mg(-1) min(-1) when incubated at 25 degrees C with 200 nM 4-androstene-3,17-dione (K(M) = 435 nM). Significant inhibition by 4-OHA up to 80% was seen at 1.5 microM. At 2000 microM, AG decreased aromatase activity by up to 82%. Letrozole reduced aromatase activity a maximum of 90% in a dose-dependent manner, but the Ki (2.3 microM) was 1000-fold higher than reported in human trials. Indole-3-carbinol and some of its derivatives, two DDE isomers and four flavones (except alpha-naphthoflavone) at 1000 microM did not significantly inhibit aromatase in vitro. Letrozole and clotrimazole, fed to juvenile rainbow trout at doses up to 1000 ppm for 2 weeks, were not effective in suppressing dehydroepiandrosterone (DHEA) induced increases in vitellogenin and 17beta-estradiol levels. These results document that trout aromatase is sensitive to inhibition in vitro by known inhibitors of the mammalian enzyme. The mechanism(s) for lack of inhibition in vivo is currently unknown and must be further investigated in order to develop a trout model for studying the role of aromatase in carcinogenesis.  相似文献   

2.
An important feature of the pharmacological profile of aromatase inhibitors is the ability of the various inhibitors to inhibit intracellular aromatase. It is now well documented that a large proportion of breast tumors express their own aromatase. This intratumoral aromatase produces estrogen in situ and therefore may contribute significantly to the amount of estrogen to which the cell is exposed. Thus it is not only important that aromatase inhibitors potently inhibit the peripheral production of estrogen and eliminate the external supply of estrogen to the tumor cell, but that they in addition potently inhibit intratumoral aromatase and prevent the tumor cell from making its own estrogen within the cell. To study the inhibition of intracellular aromatase we have compared the aromatase-inhibiting potency of the non-steroidal aromatase inhibitors, letrozole, anastrozole and fadrozole in a variety of model cellular endocrine and tumor systems which contain aromatase. We have used hamsters ovarian tissue fragments, adipose tissue fibroblasts from normal human breast, the MCF-7Ca human breast cancer cell line transfected with the human aromatase gene and the JEG-3 human choriocarcinoma cell line. Although letrozole and anastrozole are approximately equipotent in a cell-free aromatase system (human placental microsomes), letrozole is consistently 10–30 times more potent than anastrozole in inhibiting intracellular aromatase in intact rodent cells, normal human adipose fibroblasts and human cancer cell lines. Whether these differences between letrozole and anastrozole are seen in the clinical setting will have to await the results of clinical trials which are currently in progress.  相似文献   

3.
The aim of the present study was to investigate the effectiveness of several imidazole drugs to inhibit human placental aromatase compared with the known inhibitors of aromatase, 4-hydroxyandrostenedione (4-OHA) and aminoglutethimide (AG). Inhibition was similar with both androstenedione and testosterone as substrates. The order of decreasing inhibitory effect (determined from ID50 values) was: 4-OHA greater than tioconazole greater than econazole greater than bifonazole greater than clotrimazole greater than micomazole greater than isoconazole greater than ketoconazole greater than AG greater than nimorazole. The imidazole drugs and AG were reversible inhibitors of aromatase activity, in contrast 4-OHA was an irreversible inhibitor. Astemizole inhibited less than 40% whereas metronidazole, carbimazole, mebendazole, tinidazole and thiabendazole inhibited less than 20% of aromatase activity at 100 mumol/l. The imidazole drugs and AG were without effect on 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid oxidoreductase activity. In contrast 4-OHA was found to be a potent, reversible inhibitor of 3 beta-HSD-I with an ID50 value of 2.15 mumol/l. A common structural feature of the imidazole drugs having an inhibitory effect was the presence of one or more aromatic rings on the N-1 substituent. In contrast, the imidazole drugs having the imidazole ring fused to a benzene ring, i.e. benzimidazoles (astemizole, mebendazole, thiabendazole) and those having an aliphatic side chain on the N-1 of the imidazole ring (carbimazole, metronidazole, nimorazole, tinidazole) were only weak inhibitors of aromatase.  相似文献   

4.
Two isozymes of porcine aromatase, the placental and the blastocyst forms, were expressed in CHO cells using the mammalian cell transfection method. Using an 'in-cell' assay (a 3H-water release method), catalytic parameters of the porcine placental aromatase were found to be very similar to those of the human enzyme; however, the activity of the blastocyst isozyme was found to be one-thirtieth that of the placental isozyme. Product isolation assay (using testosterone as the substrate) revealed that the major steroid products were 17beta-estradiol and 19-nortestosterone. The product ratio of estradiol/19-nortestosterone was found to be 94 : 6 for the porcine placental form, 6 : 94 for the porcine blastocyst form, and 92 : 8 for the human wild-type aromatase. Therefore, the porcine blastocyst aromatase isozyme catalyzes mainly androgen 19-desmethylation rather than aromatization. In addition, inhibition profile analyses on the placental and blastocyst isozymes were performed using three steroidal inhibitors [4-hydroxyandro-stenedione (4-OHA), 7alpha-(4'-amino)phenylthio-1, 4-androstandiene-3,17-dione (7alpha-APTADD), and bridge (2, 19-methyleneoxy) androstene-3,17-dione (MDL 101,003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)]. While the two isozymes of porcine aromatase share 93% amino-acid sequence identity, our results indicate that the two porcine aromatase isozymes have distinct responses to various aromatase inhibitors.  相似文献   

5.
A M Brodie  L Y Wing 《Steroids》1987,50(1-3):89-103
Studies with 4-hydroxyandrostenedione (4-OHA) are described which demonstrate inhibition of aromatase in human placentra and rat ovaries. In animal experiments, the compound was compared with aminoglutethimide (AG) for antitumor activity and effects on plasma hormone levels. 4-OHA was more effective than AG in causing regression of DMBA-induced hormone dependent tumors in the rat. Although estradiol concentrations in ovarian vein blood were reduced initially by both compounds, there is a reflex rise in LH and estradiol levels during long-term treatment with AG, whereas hormone levels in 4-OHA treated animals remained suppressed. Further studies in ovariectomized rats indicated that during long-term treatment, 4-OHA acts as a weak androgen (the compound has less than 1% the activity of testosterone) to directly inhibit the post-castrational rise in gonadotropin levels. This antigonadotropin action of the steroidal aromatase inhibitor may help maintain reduced ovarian estrogen secretion and thus contribute to the antitumor activity of 4-OHA.  相似文献   

6.
Suicide substrates of aromatase were used as chemical probes to determine if free 19-hydroxyandrost-4-ene-3,17-dione (19-OHA) and 19-oxoandrost-4-ene-3,17-dione (19-oxoA) are obligatory intermediates in the aromatization of androst-4-ene-3,17-dione (androstenedione) to oestrone by human placental aromatase. A radiometric-HPLC assay was used to monitor 19-hydroxy, 19-oxo-, and aromatized products formed in incubations of [14C]androstenedione and human placental microsomes. When microsomes were preincubated with the suicide substrates 10 beta-mercapto-estr-4-ene-3,17-dione (10 beta-SHnorA), or 17 beta-hydroxy-10 beta-mercaptoestr-4-ene-3-one (10 beta-SHnorT), it was found that 19-hydroxy-, 19-oxo- and aromatase activities were inhibited in parallel. However, when the suicide substrates 4-hydroxyandrost-4-ene-3,17-dione (4-OHA) and 19-mercaptoandrost-4-ene-3,17-dione (19-SHA) were preincubated with placental microsomes, significantly greater inhibition of formation of oestrogens was observed in comparison to the inhibition of formation of 19-hydroxy- and 19-oxo-metabolites. Furthermore, significantly more time-dependent inhibition of 19-oxoA formation was observed in comparison to inhibition of 19-OHA formation with these same inhibitors. These results suggest that 19-hydroxy- and 19-oxo-androstenediones are not free, obligatory intermediates in the aromatization of androstenedione by human placental aromatase, but rather are products of their own autonomous cytochrome P-450-dependent, microsomal enzymatic activities.  相似文献   

7.
Abstract A recent approach for treatment and prevention of estrogen-dependent breast cancer focuses on the inhibition of aromatase, the enzyme that catalyzes the final step of estrogen biosynthesis. Some synthetic steroids, such as formestane and exemestane, resembling the natural enzyme substrate androstenedione, revealed to be potent and useful aromatase inhibitors (AIs) and were approved for the treatment of estrogen-dependent breast cancer in postmenopausal women. Recently, we found that five newly synthesized steroids with chemical features in the A- and D-rings considered important for drug-receptor interaction efficiently inhibit aromatase derived from human placental microsomes. In this work, these steroids showed a similar pattern of anti-aromatase activity in several aromatase-expressing cell lines. 5alpha-androst-3-en-17-one and 3alpha,4alpha-epoxy-5alpha-androstan-17-one were revealed to be the most potent inhibitors. These compounds induced a time-dependent inhibition of aromatase, showing to be irreversible AIs. The specific interactions of these compounds with aromatase active sites were further demonstrated by site-directed mutagenesis studies and evaluated by computer-aided molecular modeling. Both compounds were able to suppress hormone-dependent proliferation of MCF-7aro cells in a dose-dependent manner. These findings are important for the elucidation of a structure-activity relationship on aromatase, which may help in the development of new AIs.  相似文献   

8.
We have measured microsomal steroid aromatase activity in the fetal component of ovine placental cotyledons collected from pregnant ewes between 124 days and 127 days of gestation. Aromatase activity was determined by quantifying the [3H]water by-product when [1 beta-3H(N)] androstenedione was used as substrate. The mean microsomal aromatase activity (+/- SD) was 5.7 +/- 2.2 pmol.min-1.mg protein-1 (n = 12) and was 9% of the aromatase activity of human placental microsomes [mean (+/- SD) of 66.1 +/- 25.0 pmol.min-1.mg protein-1 (n = 7)]. The apparent Km for ovine placental aromatase for androstenedione, at pH 7.4 and 37 degrees C, was 50 nM while the Vmax was 20.6 pmol.min-1.mg protein-1. The respective concentrations effecting 50% inhibition of ovine placental aromatase activity (the I50) for econazole, 4-hydroxyandrostenedione, imazalil, miconazole, ketoconazole and aminoglutethimide were 0.03, 0.05, 0.15, 0.50, 5.0 and 5.5 microM. The order of relative potencies were similar to those obtained for human placental aromatase. Ketoconazole and aminoglutethimide were approx 10 times more potent inhibitors of the sheep enzyme relative to the human. Aromatase activity was not confined to the microsomal fraction of ovine placental tissue but was distributed throughout all the particulate subcellular fractions. The proportionally high activity of the tissue homogenate (1.75 pmol.min-1.mg protein-1) is suggestive that in the last third of pregnancy, aromatase is not rate limiting with regard to placental estrogen production. It would appear, therefore, that the major factor regulating placental estrogen synthesis in ovine pregnancy is the availability of substrate.  相似文献   

9.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

10.
The use of aromatase inhibitors is an established therapy for oestrogen-dependent breast cancer in postmenopausal women. However, the sole commercially available aromatase inhibitor, aminoglutethimide, is not very selective. We have therefore developed fadrozole hydrochloride and CGS 20 267, which are both currently under clinical evaluation. This report will present an analysis of structure-activity relationships in the azole series of inhibitors and give an account of the further optimization of our development compounds, starting from CGS 20 267 over CGP 45 688 and leading to CGP 47 645, the most potent aromatase inhibitors in vivo reported to date. In addition, on the basis of comparisons of these azole-type inhibitors with the most potent steroidal inhibitors published in the literature, we propose a CAMM-generated model describing the relative binding modes of these two classes of compounds at the active site of the enzyme.  相似文献   

11.
The aromatase and estrone sulfatase enzymes are important sources of biologically active estrogens in postmenopausal women with breast cancer. Promising initial results in the treatment of endocrine-responsive breast cancer have been exhibited by 125-dihydroxyvitamin D3 and the synthetic vitamin D analogues MC903 and EB1089. However, these compounds together with vitamin D3 and vitamin D3 sulfate did not inhibit the human placental aromatase enzyme when assayed up to 20 μm. Only vitamin D3 sulfate and 125-dihydroxyvitamin D inhibited the estrone sulfatase activity in human placental microsomes, albeit at high concentration (32 and 37% inhibition, respectively with 50 μm each inhibitor). It is unlikely that inhibition of aromatase or estrone sulfatase enzymes contribute to the inhibitory effect of this group of compounds on breast cancer cells in vivo.  相似文献   

12.

Background  

Aromatase, the cytochrome P-450 enzyme (CYP19) responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI), which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells.  相似文献   

13.
4-Hydroxy-4-androstene-3,17-dione (4-OHA) and 4-acetoxy-4-androstene-3,17-dione (4-AcA), in addition to being competitive inhibitors of aromatase, cause time-dependent, irreversible, loss of enzyme activity in both human placental and rat ovarian microsomes. In vivo, treatment of rats with 4-OHA also causes loss of ovarian aromatase activity. To test whether this loss of activity could have in vivo significance, rats with hormone-dependent, mammary tumors were treated with 4-OHA on alternate weeks. Tumor regression continued to occur during the weeks without treatment. These findings suggest that inactivation of aromatase is important in the mechanism of action of the compounds in vivo.  相似文献   

14.
Aromatase inhibition is a well-defined treatment option for postmenopausal breast cancer. Although several aromatase inhibitors such as aminoglutethimide, formestane, fadrozole have been found to inhibit in vivo aromatization by>85%, previous studies reported plasma estrogen levels to be sustained at approximately 20–50% of their control level during treatment with these drugs. The discrepancy could be due to lack of sensitivity or non-specific crossreactions in the radioimmunoassay (RIA) methods. Mean plasma levels of estrone (E1) and estradiol (E2) in postmenopausal women are approximately 80 and 20 pmol/l, respectively; on the contrary, mean plasma levels of the estrogen conjugate estrone sulphate (E1S) are approximately 4–500 pmol/l. Most RIA methods for plasma E2 and E1 measurements have sensitivity limits in the range of 2–3 and 7–10 pmol/l, respectively; accordingly, the suppression of plasma estrogens by more than 80–90% will produce hormone values below the sensitivity limit of the method in many patients. Recently, we developed a new method to determine plasma E1S. This assay has a sensitivity limit of 2.7 pmol/l. In theory, this method may allow the determination of plasma E1S levels suppressed to less than 2% of control values in the majority of patients. Using this method, we found different aromatase inhibitors such as formestane, aminoglutethimide, formestane and aminoglutethimide administered in concert or anastrozole to suppress plasma E1S levels down to 24, 13, 7 and 4%, respectively. The suppression of plasma E1S evaluated with this method thus approaches the percentage aromatase inhibition measured with tracer studies.  相似文献   

15.
We have evaluated the binding characteristics of three steroidal inhibitors [4-hydroxyandrostene-dione (4-OHA), 7-(4′-amino)phenylthio-1,4-androstadiene-3,17-dione (7-APTADD), and bridge (2,19-methyleneoxy) androstene-3,17-dione (MDL 101,003)], four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)], and two flavone phytoestrogens (chrysin, and 7,8-dihydroxyflavone) to aromatase through a combination of computer modeling and inhibitory profile studies on the wild-type and six aromatase mutants (I133Y, P308F, D309A, T310S, I395F, and I474Y). We have generated two aromatase models based on the x-ray structures of cytochrome P450-cam and cytochrome P450bm3, respectively. A major difference between the cytochrome P450cam-based and cytochrome P450bm3-based models is in the predicted lengths of helices F and G. In the cytochrome P450cam-based model, helices F and G lie antiparallel and extend across the active-site face of the molecule from one edge to the center, so that the carboxyl-terminal residues of helix F and the N-terminal residues of helix G make a major contribution to the structure of the active site. In the cytochrome P450bm3-based model, both helices are longer and so extend almost all the way across the active-site face of the molecule. Considering the size of the androgen substrate, we evaluated our results mainly based on the cytochrome P450cam model. The mutations involved in this study are thought to be at or near the proposed active site pocket. The inhibitory profile analysis has produced very interesting results and provided a molecular basis as to how seven aromatase inhibitors with different structures bind to the active site of aromatase. Furthermore, the investigation reveals that phytoestrogens bind to the active site of aromatase in a different orientation from that in the estrogen receptor.  相似文献   

16.
Numerous aromatase inhibitors are under development for breast cancer treatment. The major aims are to obtain a drug which at its dose of maximum efficacy has no effect on other endocrine systems, has no clinical side-effects and its convenient to administer. During the early clinical stages of development detailed endocrine and pharmacokinetic analyses are a valuable aid in the establishment of a drug's selectivity and its optimum dose, route and frequency of administration. The optimal dose may be defined as the minimum that will achieve maximal and sustained suppression of aromatase activity. This has generally been measured indirectly by comparing the suppression of plasma oestrogen levels at a selection of dosages. This approach has major advantages in speeding dose selection for therapeutic clinical trials. However, it also has some disadvantages including the unproven assumption that clinical response has a direct relationship with the degree of oestrogen suppression. In addition there are technical difficulties of analysis, of wide variability in endocrine response between patients and of demonstrating oestrogen suppression to be equivalent between doses (necessary to show maximal suppression). The direct measurement of aromatase inhibition in vivo by isotopic infusion analysis provides support to these indirect estimates. Its value is shown by our recent results with CGS16949A. The additional value of collating pharmacokinetic and endocrine measurements is apparent from our investigations of 4-hydroxyandrostenedione (4-OHA) and pyridoglutethimide. A consideration of our experience with these inhibitors may be helpful in directing the development of future agents.

Whilst the value of aromatase inhibition in breast cancer is established its value in prostatic cancer is in doubt: we have found that 4-OHA is only poorly efficacious in advanced prostatic cancer.  相似文献   


17.
18.
The synthesis of a series of N-alkylated 4-(4(')aminobenzyl)-2-oxazolidinones is described using a synthetically useful scheme which avoids the use of phosgene-since the derivatization is undertaken with the oxazolidin-2-one ring intact. The compounds were tested for human placental aromatase (AR) inhibition in vitro, using [1beta,2beta-3H]androstenedione as substrate for the AR enzyme. The compounds were found, in general, to be more potent than the standard compound, aminoglutethimide (AG), and as such proved to be good lead compounds in the search for more specific AR inhibitors.  相似文献   

19.
20.
In this study, we describe the synthesis of a new family of indolizinone derivatives designed to fit an extrahydrophobic pocket within the active site of aromatase and to strongly inhibit human aromatase. This could help improve the specificity of the inhibitors. Equine aromatase, very well characterized biochemically, is used as a comparative model. Indeed, in a previous comparison between both human and equine aromatases, we described the importance of the interaction between the inhibitor and this pocket for the indane derivative MR 20814. MR 20492 and MR 20494 are more potent inhibitors of human aromatase (Ki/Km: 1.0+/-0.3 and 0.5+/-0.3, respectively). The Ki/Km for MR 20494 is slightly higher than that obtained for fadrozole (0.1+/-0.0) and Ki/Km for both indolizinone derivatives are lower than those obtained for 4-hydroxyandrostenedione (1.9+/-0.8) and MR 20814 (8.1+/-.7). These new compounds are not enzyme inactivators. Moreover, as indicated by the higher Ki/Km values obtained with equine enzyme (9.0+/-0.6 and 6.1+/-1.6 for MR 20492 and MR 20494, respectively), both human and equine aromatase active sites appear to be structurally different. Difference absorption spectra study (350-500 nm) revealed that MR20492 and MR20494 were characterized by a combination of type-I and -II spectra with both enzymes. This result could be due to the isomerization of the molecule in polar solvent (Z and E forms). The evaluation of these new molecules, as well as 4-hydroxyandrostenedione and fadrozole, on aromatase activity in transfected 293 cell cultures evidenced a strong inhibition (IC50: 0.20+/-0.03 microM, 0.20+/-0.02 microM and 0.50+/-0.40 microM for MR 20494, fadrozole and 4-OHA, respectively) except for MR 20492 (3.9+/-0.9 microM) and MR 20814 (10.5+/-0.6 microM). These results proved that these molecules formed part of a promising family of potent inhibitors and that they penetrate 293 cells, without evidencing any cytotoxicity in Hela cells with MTT assay. This is thus encouraging for the development of new drugs for the treatment of estrogen-dependent cancers, these molecules also constitute new tools for understanding the aromatase active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号