首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.  相似文献   

2.
Mammalian oocytes have the ability to confer totipotency to terminally differentiated somatic cell nuclei. Viable cloned animals have been produced by somatic cell nuclear transfer (NT) into oocytes in many mammalian species including mouse. However, the success rates of the production were quite low in all species. Many studies have measured differences in gene expression between NT and fertilized embryos in relatively advanced stages of development such as pre- and post-natal stages or the blastocyst stage. In the present study, we compared gene expression patterns using differential display RT-PCR (DDRT-PCR) between the NT and IVF embryos at the 2-cell stage to detect some abnormalities affecting later development of NT embryos. Aberrant gene expression was detected in NT embryos compared with IVF embryos, and MuERV-L and Dnaja2 genes were down-regulated and Inpp5b and Chst12 genes were up-regulated in the NT embryos. Further analysis showed that the expression of zygotically activated genes such as Interferon-gamma, Dub-1, Spz1, DD2106 (unknown gene), and DD2111 (unknown gene) were suppressed in NT embryos, suggesting that the cellular process involved in the nuclear reprogramming of somatic nucleus is not appropriately regulated.  相似文献   

3.
Nuclear transfer (NT) is used to elucidate fundamental biological issues such as reversibility of cell differentiation and interactions between the cytoplasm and nucleus. To obtain an insight into interactions between the somatic cell nucleus and oocyte cytoplasm, nuclear remodeling and gene expression were compared in bovine oocytes that had received nuclei from bovine and mouse fibroblast cells. While the embryos that received nuclei from bovine fibroblast cells developed into blastocysts, those that received nuclei from mouse fibroblasts did not develop beyond the 8-cell stage. Similar nuclear remodeling procedures were observed in oocytes reconstructed with mouse and bovine fibroblast cells. Foreign centrosomes during NT were introduced into embryos reconstructed with both fibroblast cell types. A number of housekeeping mouse genes (hsp70, bax, and glt-1) were abnormally expressed in embryos that had received nuclei from mouse fibroblast cells. However, development-related genes, such as Oct-4 and E-cad, were not expressed. The results collectively suggest that the bovine oocyte cytoplasm supports nuclear remodeling, but not reprogramming of mouse fibroblast cells.  相似文献   

4.
5.
6.
Cloning by somatic cell nuclear transfer (NT) has been accomplished. However, the process itself is inefficient since most clones die before birth and survivors often display various anomalies. In an effort to determine global expression profiles of developmentally regulated liver genes in NT bovine fetuses, we employed a custom-made bovine liver complementary DNA (cDNA) microarray. The NT fetuses in early pregnancy were derived from cumulus cells as the nuclear donor cells. Normal fetuses were derived from in vitro fertilization (IVF) and artificial insemination (AI). Gene expression levels in NT, IVF, and AI fetal livers were obtained by comparing individual fetal liver samples with that of adult liver of nonpregnant cycling cows. Statistical analyses of the expression data showed widespread dysregulation of developmentally important genes in the three NT fetuses examined. It was found that the number of dysregulated genes was within a range of 3.5-7.7% of the tested genes in the NT fetal livers. The analyses revealed that one NT fetus was markedly different in liver gene expression profile from the other two NT fetal livers in which the expression profiles were highly correlated. Thus, our findings demonstrate that widespread dysregulation of liver genes occurs in the developing liver of NT bovine fetuses. It is possible that inappropriate genomic reprogramming after NT is a key factor associated with abnormal gene expressions in the livers of NT fetuses, whereas distinct expression patterns between the fellow cloned fetuses likely have resulted from variable epigenetic status of the donor nuclei.  相似文献   

7.
Successful cloning by somatic cell nuclear transfer (NT) involves an oocyte-driven transition in gene expression from an inherited somatic pattern, to an embryonic form, during early development. This reprogramming of gene expression is thought to require the remodeling of somatic chromatin and as such, faulty and/or incomplete chromatin remodeling may contribute to the aberrant gene expression and abnormal development observed in NT embryos. We used a novel approach to supplement the oocyte with chromatin remodeling factors and determined the impact of these molecules on gene expression and development of bovine NT embryos. Nucleoplasmin (NPL) or polyglutamic acid (PGA) was injected into bovine oocytes at different concentrations, either before (pre-NT) or after (post-NT) NT. Pre-implantation embryos were then transferred to bovine recipients to assess in vivo development. Microinjection of remodeling factors resulted in apparent differences in the rate of blastocyst development and in pregnancy initiation rates in both NPL- and PGA-injected embryos, and these differences were dependent on factor concentration and/or the time of injection. Post-NT NPL-injected embryos that produced the highest rate of pregnancy also demonstrated differentially expressed genes relative to pre-NT NPL embryos and control NT embryos, both of which had lower pregnancy rates. Over 200 genes were upregulated following post-NT NPL injection. Several of these genes were previously shown to be downregulated in NT embryos when compared to bovine IVF embryos. These data suggest that addition of chromatin remodeling factors to the oocyte may improve development of NT embryos by facilitating reprogramming of the somatic nucleus.  相似文献   

8.
9.
10.
11.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

12.
13.
The majority of cloned animals derived by nuclear transfer from somatic cell nuclei develop to the blastocyst stage but die after implantation. Mouse embryos that lack an Oct4 gene, which plays an essential role in control of developmental pluripotency, develop to the blastocyst stage and also die after implantation, because they lack pluripotent embryonic cells. Based on this similarity, we posited that cloned embryos derived from differentiated cell nuclei fail to establish a population of truly pluripotent embryonic cells because of faulty reactivation of key embryonic genes such as Oct4. To explore this hypothesis, we used an in silico approach to identify a set of Oct4-related genes whose developmental expression pattern is similar to that of Oct4. When expression of Oct4 and 10 Oct4-related genes was analyzed in individual cumulus cell-derived cloned blastocysts, only 62% correctly expressed all tested genes. In contrast to this incomplete reactivation of Oct4-related genes in somatic clones, ES cell-derived cloned blastocysts and normal control embryos expressed these genes normally. Notably, the contrast between expression patterns of the Oct4-related genes correlated with efficiency of embryonic development of somatic and ES cell-derived cloned blastocysts to term. These observations suggest that failure to reactivate the full spectrum of these Oct4-related genes may contribute to embryonic lethality in somatic-cell clones.  相似文献   

14.
15.
Gene trapping in embryonic stem (ES) cells was used to identify a novel gene involved in mouse development. In order to screen trapped ES cell lines for the presence of developmentally regulated genes, an in vitro differentiation test was used. One of the G418 resistant cell lines, in conjunction with the lacZ reporter gene, showed differential expression patterns under differentiated and undifferentiated conditions. The gene trap insertion in this cell line was germ-line transmitted and X-gal staining was used to assess the expression pattern of lacZ in embryos heterozygous for the trapped allele. The reporter gene's expression was detected in commissural neurons in the developing spinal cord, suggesting functions for the trapped gene in mouse neural development. Structural analysis of the cDNA revealed that this trapped gene, named PRDC (protein related to DAN and cerberus), is a novel gene that encodes a putative secretory protein consisting of 168 amino acid residues. PRDC gene product shows limited similarities to the products of DAN (differential screening-selected gene aberrative in neuroblastoma) and cerberus . (DAN is a possible tumor-suppressor for neuroblastoma in human. Cerberus can induce an ectopic head in Xenopus embryos when ectopically expressed.) These three gene products may form a novel family of signaling molecules.  相似文献   

16.
17.
This study examined the chromatin morphology, in vitro development, and expression of selected genes in cloned embryos produced by transfer of mouse embryonic fibroblasts (MEF) into the bovine ooplasm. After 6 hr of activation, inter-species nuclear transfer (NT) embryos (MEF-NT) had one (70%) or two pronuclei (20%), respectively. After 72 hr of culture in vitro, 62.6% of the MEF-NTs were arrested at the 8-cell stage, 31.2% reached the 2- to 4-cell stage, and only 6.2% had more than eight blastomeres, but none of these developed to the blastocyst stage. Whereas, 20% of NT embryos derived from bovine embryonic fibroblast fused with bovine ooplasm (BEF-NT) reached the blastocyst stage. Donor MEF nuclei expressing an Enhanced Green Fluorescent Protein (EGFP) transgene resulted in 1- to 8-cell stage MEF-NT that expressed EGFP. The expression of selected genes was examined in 8-cell MEF-NTs, 8-cell mouse embryos, enucleated bovine oocytes, and MEFs using RT-PCR. The mRNA for heat shock protein 70.1 (Hsp 70.1) gene was detected in MEF-NTs and MEF, but not in mouse embryos. The hydroxy-phosphoribosyl transferase (HPRT) mRNA was found in normal mouse embryos and MEF but not in MEF-NTs. Expression of Oct-4 and embryonic alkaline phospatase (eAP) genes was only detected in normal mouse embryos and not in the inter-species NT embryos. Abnormal gene expression profiles were associated with an arrest in the development at the 8-cell stage, but MEF-NT embryos appeared to have progressed through gross chromatin remodeling, typical of intra-species NT embryos. Therefore, molecular reprogramming rather than chromatin remodeling may be a better indicator of nuclear reprogramming in inter-species NT embryos.  相似文献   

18.
Su J  Wang Y  Li R  Peng H  Hua S  Li Q  Quan F  Guo Z  Zhang Y 《PloS one》2012,7(4):e36181
The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB- (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB- embryos (embryos developed from BCB- oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.  相似文献   

19.
20.
Zhuo  Lang  Messing  Albee  Azen  Edwin A. 《Transgenic research》1997,6(1):19-25
The ability of two mouse PRP gene promoters to direct the expression of the bacterial lacZ reporter gene was tested in transgenic mice. Transgenes A1-lacZ and C1-lacZ consisted of 8.2 kb A1 and 7.8 kb C1 PRP promoters respectively fused to the lacZ coding sequence. A1 and C1 are two A-type PRP genes isolated from the inbred SWR mice, which show the same gene structure and similar sequence to the closely related MP2 and M14 PRP genes previously cloned from outbred CD-1 mice. We here show that both A1-lacZ and C1-lacZ transgenes have very similar expression patterns: (1) they expressed the lacZ gene in all 14 established transgenic lines under normal (non-stimulated) conditions; (2) the expression was restricted to the granular convoluted tubular cells of the submandibular glands; (3) the expression was developmentally regulated beginning at sexual maturation and lasting to at least 1.5 years of age; and (4) expression in some lines was probably influenced by sex hormones, since higher expression was found in males than in females. A1-lacZ and C1- lacZ are the first transgenes derived from the PRP/GRP (glutamine/glutamic acid-rich protein) gene superfamily to be expressed in the granular convoluted tubular cells (with known endocrine functions), rather than in the acinar cells (with mainly exocrine functions) of the submandibular glands  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号