首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
1. We evaluated restoration success on macrophyte species diversity and composition in lowland streams using communities in 30 naturally meandering stream reaches in the western part of Jutland, Denmark, as reference target communities. Fuzzy set clustering was used to examine the floristic and environmental similarity among reaches, whereas fuzzy set ordination was used to relate floristic patterns to environmental variables. 2. Two major groups of streams were identified based on their floristic composition. One group consisted of reference and restored reaches and the other of the majority of channelised reaches. We found that management exerted a strong influence on the macrophyte communities and that the identified groups were related to differences in management intensity. 3. Our results also indicate that bank morphology and bed level affected macrophyte communities in the streams, particularly the richness and abundance of terrestrial species. The analyses performed suggest that shallow and wide banks allow for a larger migration of species from the stream banks into the streams, thereby enhancing species diversity within the stream channel. 4. The results of this study suggest that macrophyte communities in channelised lowland streams can recover following restorative interventions given that stream management (i.e. weed cutting and dredging) is minimised and that stream banks are reprofiled to improve the lateral connectivity between the stream and its valley.  相似文献   

2.
1. Periphytic diatoms, macrophytes, benthic macroinvertebrates and fish were sampled with standard methods in 185 streams in nine European countries to compare their response to degradation. Streams were classified into two main stream type groups (i.e. lowland, mountain streams); in addition, the lowland streams were grouped into four more specific stream types. 2. Principal components analysis with altogether 43 environmental parameters was used to construct complex stressor gradients for physical–chemical, hydromorphological and land use data. About 30 metrics were calculated for each sample and organism group. Metric responses to different stress types were analysed by Spearman Rank Correlation. 3. All four organism groups showed significant response to eutrophication/organic pollution gradients. Generally, diatom metrics were most strongly correlated to eutrophication gradients (85% and 89% of the diatom metrics tested correlated significantly in mountain and lowland streams, respectively), followed by invertebrate metrics (91% and 59%). 4. Responses of the four organism groups to other gradients were less strong; all organism groups responded to varying degrees to land use changes, hydromorphological degradation on the microhabitat scale and general degradation gradients, while the response to hydromorphological gradients on the reach scale was mainly limited to benthic macroinvertebrates (50% and 44% of the metrics tested correlated significantly in mountain and lowland streams, respectively) and fish (29% and 47%). 5. Fish and macrophyte metrics generally showed a poor response to degradation gradients in mountain streams and a strong response in lowland streams. 6. General recommendations on European bioassessment of streams were derived from the results.  相似文献   

3.
The paper presents a new index for assessing water trophy and organic pollution. It is based on only true aquatic macrophytes – being calculated on species score, coefficient of ecological amplitude and degree of cover. The method was tested in an acidic lowland river and an alkaline mountain river, and is shown to be validated by bio-indication scales based on macrophyte communities. The practical interest is discussed regarding the Water Framework Directive. Electronic Supplementary Material Electronic supplementary material is available for this article atand accessible for authorised users.  相似文献   

4.
The macrophyte surveys undertaken as part of the EU-funded STAR project are a unique resource allowing aquatic plant communities to be studied at a Pan-European scale (211 stream sites with macrophytes in 14 countries). Using this dataset, we examined the influence of organic pollution in relation to other environmental correlates of river plant community variation across Europe. We examined the relationships between several existing macrophyte metrics and nutrient enrichment, and we also explored the possibility of developing a pan-European macrophyte-based assessment system. We showed that trophic (nutrient) status is an important driver of aquatic plant communities in European rivers. We found that while most existing macrophyte metrics are useful, none can be applied at a pan-European scale in their current form. Our attempt to redesign the Mean Trophic Rank (MTR) index by the addition of further species, and the re-scoring of existing species, resulted in a considerable improvement in the relationship between MTR scores and nutrient variables. We conclude that an enlarged core group of macrophyte species can form part of an improved pan-European macrophyte-based bioassessment system, although regional modifications may be required to adequately describe the nutrient status of certain stream types. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Macrophyte communities of European streams with altered physical habitat   总被引:2,自引:2,他引:0  
The impact of altering hydro-morphology on three macrophyte community types was investigated at 107 European stream sites. Sites were surveyed using standard macrophyte and habitat survey techniques (Mean Trophic Rank Methodology and River Habitat Survey respectively). Principal Components Analysis shows the macrophyte community of upland streams live in a more structurally diverse physical habitat than lowland communities. Variables representing the homogeneity and diversity of the physical environment were used to successfully separate un-impacted from impacted sites, e.g. homogeneity of depth and substrate increased with decreasing quality class for lowland sites (ANOVA p < 0.05). Macrophyte attribute groups and structural metrics such as species richness were successfully linked to hydro-morphological variables indicative of impact. Most links were specific to each macrophyte community type, e.g., the attribute group liverworts, mosses and lichens decreased in abundance with increasing homogeneity of depth and decreasing substrate size at lowland sites but not at upland sites. Elodea canadensis, Sparganium emersum and Potamogeton crispus were indicative of impacted lowland sites. Many of the indicator species are also known to be tolerant to other forms of impact. The potential for a macrophyte tool indicative of hydro-morphological impact is discussed. It is concluded one could be constructed by combining indicator species and metrics such as species richness and evenness.  相似文献   

6.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

7.
1. Although many studies have focussed on the effects of catchment land use on lotic systems, the importance of broad (catchment) and fine (segment/reach) scale effects on stream assemblages remain poorly understood. 2. Nine biological metrics for macrophytes (498 sites), benthic macroinvertebrates (491) and fish (478) of lowland and mountain streams in four ecoregions of France and Germany were related to catchment and riparian buffer land use using partial Redundancy Analysis and Boosted Regression Trees (BRTs). 3. Lotic fauna was better correlated (mean max., r = 0.450) than flora (r = 0.277) to both scales of land use: the strongest correlations were noted for mountain streams. BRTs revealed strong non‐linear relationships between mountain assemblage metrics and land use. Correlations increased with increasing buffer lengths, suggesting the importance of near‐stream land use on biotic assemblages. 4. Several metrics changed markedly between 10–20% (mountain ecoregions) and 40–45% (lowland) of arable land use, irrespective of the buffer size. At mountain sites with >10% catchment arable land use, metric values differed between sites with <30% and sites with >30% forest in the near‐stream riparian area. 5. These findings support the role of riparian land use in catchment management; however, differences between mountain and lowland ecoregions support the need for ecoregion‐specific management.  相似文献   

8.
Macrophytes influence the physical, chemical, and biological characteristics of lowland streams, so may be critically important in stream management. We investigated the role of macrophytes in regulating metabolism and nutrient cycling in three lowland, agricultural streams. We measured stream metabolism over the growing season and following experimental macrophyte removal, and used short-term nutrient additions of phosphate (P) and ammonium to assess macrophyte influences on nutrient uptake. Primary production was closely correlated with macrophyte cover across all streams and dates, and decreased greatly with macrophyte removal, whereas ecosystem respiration was not correlated with macrophyte cover and was not altered by macrophyte removal. Phosphate uptake velocity was negatively related to primary production, suggesting that macrophyte activity actually slowed P uptake. Ammonium uptake was not correlated with macrophyte cover or metabolism metrics. Stream nitrate concentrations typically exceeded concentrations of incoming groundwater, suggesting little net nitrate retention in these macrophyte-dominated streams. Phosphorous demand by macrophytes was 10-fold lower than observed uptake rates, indicating that macrophyte P demand was much lower than that of other stream biota. Nitrogen demand by macrophytes was nearly equal to ammonium uptake and was not sufficient to affect the high nitrate flux. These results indicate that macrophytes drive ecosystem metabolism but have limited influence on water column nutrient concentrations because macrophyte demand is much lower than the supply available from the water column. Thus macrophytes in our streams had a large impact on stream trophic state, but offered little potential to influence nutrient removal via management.  相似文献   

9.
A number of biological approaches are commonly used to assess the ecological integrity of stream ecosystems. Recently, it is becoming increasingly common to use multiple organism groups in bioassessment. Advocates of the multiple organism approach argue that the use of different organism groups should strengthen inference-based models and ultimately result in lower assessment error, while opponents argue that organism groups often respond similarly to stress implying a high degree of redundancy. Using fish, macroinvertebrate, macrophyte and benthic diatom data, site-specific parameters (e.g., water chemistry and substratum) and catchment variables from European mountain (n = 77) and lowland (n = 85) streams we evaluated the discriminatory power and uncertainty associated with the use of a number of biological metrics commonly used in stream assessment. The primary environmental gradient for both streams types was land use and nutrient enrichment. Secondary and tertiary gradients were related to habitat quality or alterations in hydromorphology. Benthic diatom and macroinvertebrate metrics showed high discriminatory power (R2 values often >0.50) and low error (<30%) with the primary (nutrient) gradient, while both fish and macrophyte metrics performed relatively poorly. Conversely, both fish and macrophyte metrics showed higher response (high coefficients of determination) than either benthic diatom or macroinvertebrate metrics to the second (e.g., alteration in habitat/hydromorphology) gradient. However, the discriminatory power and error associated with individual metrics varied markedly, indicating that caution should be exercised when selecting the ‘best’ organism group or metric to monitor stress.  相似文献   

10.
In the EU Water Framework Directive (WFD) a typological framework is defined for assessing the ecological quality of water bodies in the future. The conditions in the Directive impose a strong demand for `new' assessment systems. During the AQEM project an assessment system was developed for European streams using macroinvertebrates. The aim of this study was to test if the typology suggested in the WFD is useful for developing an assessment system for macroinvertebrates in streams. In total 889 streams of 29 stream types were sampled in eight countries all over the major geographical gradients in Europe. These stream types fit the WFD typological demands and fit to the major European geographic regions (ecoregions). The sites included gradients from reference conditions (for the definition see Nijboer et al., 2004) to sites with bad ecological quality. Despite standardisation there were large differences between the participating countries concerning the number of taxa, the number of specimens and the taxonomic resolution. The data, including macroinvertebrates and environmental variables were analysed by using Canonical Correspondence Analysis (CCA). The observed macroinvertebrate distribution largely supported the WFD typological criteria. This means that the major macroinvertebrate distribution patterns in European streams follow climatological and geomorphological conditions and are well distinguished in terms of stream types. Furthermore, it was shown that large scale factors affected the macroinvertebrate distribution even on a very fine scale. Most explanatory variables seemed to be scale independent. Even at a fine scale major factors concerning geology, geomorphology and hydrology added to the species occurrences. Within stream types morphology together with physico-chemistry best explained the macroinvertebrates distribution. In conclusion, the WFD typology is useful for an assessment system for streams using macroinvertebrates. The large scale factors were indeed the variables that explained most of the variation in species composition. But as these factors even strongly act at the scale of stream types, a further refinement is most probably necessary to disentangle typological actors from water quality ones.  相似文献   

11.
Submerged macrophytes grow abundantly in most shallow streams common in the cultivated lowlands of northwestern Europe. Weed-cutting has been practised for years in many of these streams to reduce the risk of flooding of adjacent land. Our objective was to quantify long-term impacts of weed-cutting on macrophyte communities in two Danish rivers. We found that the total macrophyte coverage was similar in the weed-cut and uncut reaches in the two rivers, but species richness, diversity and patch complexity were higher in the uncut reaches. The spatial distribution of macrophytes on the stream bottom was also more heterogeneous in the uncut stream reaches. We also found evidence of a strong effect of weed-cutting on macrophyte species composition. P. natans was abundant in the uncut reaches in both streams but practically eliminated in the cut reaches, despite the fact that its basic habitat requirements were met. Also, the established phase strategy of the macrophyte community was affected by weed-cutting. Species displaying characteristically ruderal traits were more abundant in the cut reaches and species with competitive abilities were only abundant in the uncut stream reaches. We suggest that important species traits in streams, where the weed is cut regularly, are associated with rapid growth and high dispersal-capacity. Our results indicate that weed-cutting can contribute significantly to a decline in species diversity in streams. To provide optimal conditions for diverse stream macrophyte communities, we therefore suggest that weed-cutting should be minimised.  相似文献   

12.
Benthic macroinvertebrate samples were collected from natural substrates in disturbed and undisturbed South Carolina upper coastal plain streams to determine if taxa richness and other bioassessment metrics were significantly related to stream size as predicted by the River Continuum Concept (RCC). Linear, quadratic, and lognormal regression models indicated that stream width was positively related to total number of taxa; number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; and total number of organisms. Linear regression showed that the expected number of taxa at undisturbed sites ranged from 35 in 2.0 m wide streams to 64 in 16.0 m streams. Comparable values were 8–20 for EPT and 109–261 for number of organisms. Stream width was inversely related to biotic index values indicating a decrease in average organism tolerance with increasing stream size. ANCOVA showed that the effects of stream size were similar for disturbed and undisturbed sites. Rank correlations and multidimensional scaling (MDS) showed that Lepidoptera and Trichoptera were more abundant in larger streams and Annelida in smaller streams. Stream size related changes in benthic macroinvertebrate community composition are often ignored in bioassessment protocols; however, failure to adjust metrics for stream size can lead to erroneous conclusions. Adjustments are possible by analyzing regression residuals stripped of stream size related variance, dividing the area beneath the maximum taxa richness line into equal size units for metric scoring, or scaling metrics based on predicted reference values. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
The study was carried out from 2007 to 2010 in two ecoregions: the Carpathians and the Central Highlands. The objectives of our survey were to test the existing biological index metric based on benthic macroinvertebrates at reference conditions in the high- and mid-altitude mountain streams of two ecoregions according to the requirements of the EU WFD and to determine which environmental factors influence the distribution of benthic macroinvertebrates. Our results revealed statistically significant differences in the values of the physical and chemical parameters of water as well as the mean values of metrics between the types of streams at the sampling sites. RDA analysis showed that the temperature of the water, pH, conductivity, the stream gradient, values of the HQA index, and altitude were the parameters most associated with the distribution of benthic macroinvertebrate taxa and the values of the metrics. The values of biological indices should be considered according to the stream typology including altitude and geology. At the reference conditions, the suggested border values of biological indices are very harsh. The values of the biological indices of most sampling sites did not correspond to the requirements of the high status in rivers. The streams at altitudes above 1,200 m a.s.l. should be treated as another river type and new reference values should be established.  相似文献   

14.
An important goal for community ecology is the characterization and prediction of changes in community patterns along environmental gradients. We aimed to identify the major environmental correlates of diatom distribution patterns in boreal running waters. We classified 197 stream sites based on their diatom flora. Direct ordination methods were then used to identify the key environmental determinants of this diatom-based stream typology. Finally, we tested whether a regional classification scheme based on terrestrial landscapes (ecoregions) provides a reasonable framework for a regional grouping of streams based on their diatom flora. Two-way indicator species analysis produced 13 site groups, which were primarily separated by chemical variables, mainly conductivity, total P and water colour. In partial CCA, the environmental and spatial factors accounted for 38% and 24%, respectively, of explained variation in community composition. A high proportion (almost 40%) of variation explained by the combined effect (spatially-structured environmental) indicated that diatom communities of boreal streams incorporate a strong spatial component. At the level of subecoregions, classification strength was almost equally strong for all sites as for near-pristine reference sites only. Procrustes analysis indicated that spatial factors and patterns in diatom community structure were strongly concordant. Our data support the argument that diatom communities are strongly spatially structured, with distinctly different communities in different parts of the country. Because of the strong spatial patterns of community composition, bioassessment programs utilising lotic diatoms would clearly benefit from regional stratification. A combination of regional stratification and the prediction of assemblage structure from local environmental features might provide the most robust framework for diatom-based assessment of the biological integrity of boreal streams.  相似文献   

15.
The aim of the study was to verify botanical and ecological traits of river typology based on macrophytes. We compared diversities of macrophyte communities in different river types and their relationship to water quality. The 240 surveyed rivers were situated in the central-west of Poland in a lowland area. Species compositional similarities were analysed using the Jaccard index. The macrophyte matrix was classified into four groups: Large rivers (LR), Sandy rivers (SaR), Stony rivers (StR) and Organic rivers (OR). The highest level of homogeneity was found for LR, followed by OR, StR and SaR. The greatest differences in species composition were found between LR and StR. Variabilities of indices (species richness, Shannon, Simpson and Pielou indices, and total cover) confirmed the specific diversity patterns in the four types of rivers. All metrics based on relative abundance were strongly correlated with each other, and they were never correlated with water quality. The total covers of LR and OR as well as species richness of LR show some correlation with water quality. The total cover was correlated with water quality in OR and LR. The communities with the highest species richness were related with OR.  相似文献   

16.
17.
Warfe DM  Barmuta LA 《Oecologia》2006,150(1):141-154
A considerable amount of research has investigated the influence of habitat structure on predator success, yet few studies have explored the implications for community structure and food-web dynamics. The relative importance of macrophyte structure and fish predation on the composition of the macroinvertebrate and periphyton communities in a lowland river was investigated using a multifactorial caging experiment. We hypothesised that: (1) fish predators are less effective in a more structurally complex macrophyte analogue; (2) strong direct and indirect effects of fish predators (e.g. trophic cascades) are less likely to occur in a structurally complex habitat; and (3) the strength of these patterns is influenced by the composition of the prevailing community assemblage. We measured the abundance and composition of the macroinvertebrate and periphyton communities associated with three different-shaped macrophyte analogues, under different fish predator treatments and at different times. Macrophyte analogue architecture had strong, consistent effects on both the macroinvertebrate and periphyton communities; both were most abundant and diverse on the most structurally complex plant analogue. In contrast, the fish predators affected only a subset of the macroinvertebrate community and there was a suggestion of minor indirect effects on periphyton community composition. Contrary to expectations, the fish predators had their strongest effects in the most structurally complex macrophyte analogue. We conclude that in this system, macrophyte shape strongly regulates the associated freshwater assemblage, resulting in a diverse community structure less likely to exhibit strong effects of fish predation.  相似文献   

18.
1. The hydrological regime is important to the distribution of benthic organisms in streams. The objective of this study was to identify relationships between hydrological variables, describing the flow regime, and macrophyte cover, species richness, diversity and community composition in Danish lowland streams.
2. We quantified macrophyte vegetation in 44 Danish streams during summer by cover, species richness and diversity. Flow regime was characterized by 18 non-intercorrelated variables describing magnitude, frequency and duration of low and high flow events, timing or predictability of flow and general flow variability.
3. We found support in the stepwise multiple regressions analysis for our expectation that macrophyte cover is lowest in streams with high flow variability and highest in streams with long duration of low flow and low flow variability. We found support for the intermediate disturbance hypothesis as there were significant quadratic relationships between species richness and diversity as functions of disturbance frequency. There was poor discrimination in a detrended correspondence analysis (DCA) analysis of macrophyte community composition between four twinspan groups separating streams with different hydrological properties. Moreover, we did not find any relationship between the presence of disturbance-tolerant species and hydrological disturbance, suggesting that plant community composition developed independently of stream hydrology.  相似文献   

19.
The EU Water Framework Directive requires assessment of the ecological quality of running waters using macroinvertebrates. One of the problems of obtaining representative samples of organisms from streams is the choice of sampling date, as the scores obtained from macroinvertebrate indices vary naturally between seasons, confounding the detection of anthropogenic environmental change. We investigated this problem in a 4th order calcareous stream in the western Carpathian Mountains of central Europe, the Stupavsky potok brook. We divided our 100 m study site into two stretches and took two replicate samples every other month alternately from each stretch for a period of 1 year, sampling in the months of February, April, June, August, October and December. Multivariate analysis of the macroinvertebrate communities (PCA) clearly separated the samples into three groups: (1) April samples (2) June and August samples (3) October, December and February samples. Metric scores were classified into two groups those that were stable with respect to sampling month, and those that varied. Of the metrics whose values increase with amount of allochthonous organic material (ALPHA_MESO, hyporhithral, littoral, PASF, GSI new, DSI, CSI), the highest scores occurred in February, April, October and December, while for metrics whose values decrease with content of organic material (DSII, DIS, GFI D05, PORI, RETI, hypocrenal, metarhithral, RP, AKA, LITHAL, SHRED, HAI) the highest values occurred in February, April, June and December. We conclude that sampling twice a year, in early spring and late autumn, is appropriate for this type of metarhithral mountain stream. Sampling in summer is less reliable due to strong seasonal influences on many of the metrics examined while sampling in winter is inappropriate for logistical reasons. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
Pinto  Paulo  Rosado  Joana  Morais  Manuela  Antunes  Isabel 《Hydrobiologia》2004,516(1-3):191-214
A sampling programme was developed in three stream types, of siliceous geology, from the south of Portugal (small and mid-sized lowland streams and small-sized median altitude streams). The samples were taken according to the AQEM site protocol procedure, keeping transport and depositional habitats samples separated. In each stream type, at least 13 sites were studied over a gradient of organic pollution (pre-classification). The benthic macroinvertebrates were identified to the lowest possible taxonomic level. A Detrended Correspondence Analysis of macroinvertebrate communities identified a gradient of organic pollution strongly related to the first axis. This ordination allowed the establishment of classes of organic pollution using the Kmeans software (post-classification). Metrics based on the macroinvertebrate communities (tolerance, richness, composition and trophic structure) were computed and tested for correlation with the gradient of organic pollution (first axis of DCA). Most of the selected metrics were able to discriminate the four quality classes (high, good, moderate and poor) of ecological status. A multimetric index, integrating ASPT′ index, Trichoptera families and percentage of Gasteropoda, Oligochaeta and Diptera, is proposed to assess the ecological status of Portuguese southern siliceous basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号