首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
LysK is a staphylococcal bacteriophage endolysin composed of three domains: an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain, a midprotein amidase 2 domain, and a C-terminal SH3b_5 (SH3b) cell wall-binding domain. Both catalytic domains are active on purified peptidoglycan by positive-ion electrospray ionization MS. The cut sites are identical to LytA (phi11 endolysin), with cleavage between d -alanine of the stem peptide and glycine of the cross-bridge peptide, and N -acetylmuramoyl- l -alanine amidase activity. Truncations of the LysK containing just the CHAP domain lyse Staphylococcus aureus cells in zymogram analysis, plate lysis, and turbidity reduction assays but have no detectable activity in a minimal inhibitory concentration (MIC) assay. In contrast, truncations harboring just the amidase lytic domain show faint activity in both the zymogram and turbidity reduction assays, but no detectable activity in either plate lysis or MIC assays. A fusion of the CHAP domain to the SH3b domain has near full-length LysK lytic activity, suggesting the need for a C-terminal binding domain. Both LysK and the CHAP-SH3b fusion were shown to lyse untreated S. aureus and the coagulase-negative strains. In the checkerboard assay, the CHAP-SH3b fusion achieves the same level of antimicrobial synergy with lysostaphin as the full-length LysK.  相似文献   

2.
The Staphylococcus aureus bacteriophage phi11 endolysin has two peptidoglycan hydrolase domains (endopeptidase and amidase) and an SH3b cell wall-binding domain. In turbidity reduction assays, the purified protein can lyse untreated staphylococcal mastitis pathogens, Staphylococcus aureus and coagulase-negative staphylococci (Staphylococcus chronogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus), making it a strong candidate protein antimicrobial. This lytic activity is maintained at the pH (6.7), and the "free" calcium concentration (3 mM) of milk. Truncated endolysin-derived proteins containing only the endopeptidase domain also lyse staphylococci in the absence of the SH3b-binding domain.  相似文献   

3.
Peptidoglycan hydrolase fusions maintain their parental specificities   总被引:3,自引:0,他引:3  
The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.  相似文献   

4.
The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63°C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.  相似文献   

5.
Virion-associated peptidoglycan hydrolases have potential as antimicrobial agents due to their ability to lyse Gram-positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion-associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. Full-length HydH5 and two truncated derivatives containing only the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain exhibited high lytic activity against live S. aureus cells. In addition, three different fusion proteins were created between lysostaphin and HydH5, each of which showed higher staphylolytic activity than the parental enzyme or its deletion construct. Both parental and fusion proteins lysed S. aureus cells in zymograms and plate lysis and turbidity reduction assays. In plate lysis assays, HydH5 and its derivative fusions lysed bovine and human S. aureus strains, the methicillin-resistant S. aureus (MRSA) strain N315, and human Staphylococcus epidermidis strains. Several nonstaphylococcal bacteria were not affected. HydH5 and its derivative fusion proteins displayed antimicrobial synergy with the endolysin LysH5 in vitro, suggesting that the two enzymes have distinct cut sites and, thus, may be more efficient in combination for the elimination of staphylococcal infections.  相似文献   

6.
For bacteria and bacteriophages, cell wall digestion by hydrolases is a very important event. We investigated one of the proteins involved in cell wall digestion, the yomI gene product (renamed CwlP). The gene is located in the SP-β prophage region of the Bacillus subtilis chromosome. Inspection of the Pfam database indicates that CwlP contains soluble lytic transglycosylase (SLT) and peptidase M23 domains, which are similar to Escherichia coli lytic transglycosylase Slt70, and the Staphylococcus aureus Gly-Gly endopeptidase LytM, respectively. The SLT domain of CwlP exhibits hydrolytic activity toward the B. subtilis cell wall; however, reverse phase (RP)-HPLC and mass spectrometry revealed that the CwlP-SLT domain has only muramidase activity. In addition, the peptidase M23 domain of CwlP exhibited hydrolytic activity and could cleave d-Ala-diaminopimelic acid cross-linkage, a property associated with dd-endopeptidases. Remarkably, the M23 domain of CwlP possessed a unique Zn(2+)-independent endopeptidase activity; this contrasts with all other characterized M23 peptidases (and enzymes similar to CwlP), which are Zn(2+) dependent. Both domains of CwlP could hydrolyze the peptidoglycan and cell wall of B. subtilis. However, the M23 domain digested neither the peptidoglycans nor the cell walls of S. aureus or Streptococcus thermophilus. The effect of defined point mutations in conserved amino acid residues of CwlP is also determined.  相似文献   

7.
The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity.  相似文献   

8.
Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully conserved CW_7 repeats essential for activity. Firstly identified in the Cpl-7 endolysin, CW_7 motifs are also present in a great variety of cell wall hydrolases encoded, among others, by human and live-stock pathogens. However, the nature of CW_7 receptors on the bacterial envelope remains unknown. In the present study, the structural stability of Cpl-7 and the target recognized by CW_7 repeats, relevant for exploitation of Cpl-7 as antimicrobial, have been analyzed, and transitions from the CM and the CWBM assigned, using circular dichroism and differential scanning calorimetry. Cpl-7 stability is maximum around 6.0–6.5, near the optimal pH for activity. Above pH 8.0 the CM becomes extremely unstable, probably due to deprotonation of the N-terminal amino-group, whereas the CWBM is rather insensitive to pH variation and its structural stabilization by GlcNAc-MurNAc-l-Ala-d-isoGln points to the cell wall muropeptide as the cell wall target recognized by the CW_7 repeats. Denaturation data also revealed that Cpl-7 is organized into two essentially independent folding units, which will facilitate the recombination of the CM and the CWBM with other catalytic domains and/or cell wall-binding motifs to yield new tailored chimeric lysins with higher bactericidal activities or new pathogen specificities.  相似文献   

9.
A truncated derivative of the phage endolysin LysK containing only the CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase) domain exhibited lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus. This is the first known report of a truncated phage lysin which retains high lytic activity against live staphylococcal cells.  相似文献   

10.
The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity.  相似文献   

11.
The search for new drugs against Streptococcus pneumoniae (pneumococcus) is driven by the 1.5 million deaths it causes annually. Choline-binding proteins attach to the pneumococcal cell wall through domains that recognize choline moieties, and their involvement in pneumococcal virulence makes them potential targets for drug development. We have defined chemical criteria involved in the docking of small molecules from a three-dimensional structural library to the major pneumococcal autolysin (LytA) choline binding domain. These criteria were used to identify compounds that could interfere with the attachment of this protein to the cell wall, and several quinolones that fit this framework were found to inhibit the cell wall-degrading activity of LytA. Furthermore, these compounds produced similar effects on other enzymes with different catalytic activities but that contained a similar choline binding domain; that is, autolysin (LytC) and the phage lytic enzyme (Cpl-1). Finally, we resolved the crystal structure of the complex between the choline binding domain of LytA and ofloxacin at a resolution of 2.6 Angstroms. These data constitute an important launch pad from which effective drugs to combat pneumococcal infections can be developed.  相似文献   

12.
The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an “EF-hand-like” calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.  相似文献   

13.
噬菌体裂解酶的抗菌特性   总被引:3,自引:0,他引:3  
王琰  陆承平 《微生物学报》2009,49(10):1277-1281
摘要:噬菌体裂解酶是一类细胞壁水解酶,可水解肽聚糖,造成细菌的破裂。裂解酶一般具有两到三个结构域,参与对底物的催化和结合。作为一种新型的杀菌制剂,裂解酶已被越来越多地应用于化脓链球菌、肺炎链球菌、金黄色葡萄球菌等革兰氏阳性细菌病的治疗。与抗生素治疗相比,裂解酶不易使细菌产生抗性且作用相对专一,这可能是解决现在日趋严重的细菌耐药性的一种可行方法。另外,裂解酶还具有高效性,作用协同性,且自身抗体不削弱其作用等优势,使之成为未来预防、控制致病菌一种可能的新途径。  相似文献   

14.
The hypothetical Escherichia coli protein YfhD has been identified as the archetype for the family 1B lytic transglycosylases despite a complete lack of experimental characterization. The yfhD gene was amplified from the genomic DNA of E. coli W3110 and cloned to encode a fusion protein with a C-terminal His(6) sequence. The enzyme was found to be localized to the outer membrane of E. coli, as would be expected for a lytic transglycosylase. Its gene was engineered for the production of a truncated soluble enzyme derivative lacking an N-terminal signal sequence and membrane anchor. The soluble YfhD derivative was purified to apparent homogeneity, and three separate in vitro assays involving high pressure liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used to demonstrate the YfhD-catalyzed release of 1,6-anhydromuro-peptides from insoluble peptidoglycan. In addition, an in vivo bioassay developed using the bacteriophage lambda lysis system confirmed that the enzyme functions as an autolysin. Based on these data, the enzyme was renamed membrane-bound lytic transglycosylase F. The modular structure of MltF was investigated through genetic engineering for the separate production of identified N-terminal and C-terminal domains. The ability to bind peptidoglycan and lytic activity were only associated with the isolated C-terminal domain. The enzymatic properties of this lytic transglycosylase domain were found to be very similar to those of the wild-type enzyme. The one notable exception was that the N-terminal domain appears to modulate the lytic behavior of the C-terminal domain to permit continued lysis of insoluble peptidoglycan, a unique feature of MltF compared with other characterized lytic transglycosylases.  相似文献   

15.
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.  相似文献   

16.
A tailed bacteriophage, phi MR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1-150] and the lysozyme (aa 401-624) domains but not the linker domain (aa 151-400) caused efficient lysis of S. aureus. Immunoelectron microscopy localized gp61 to the tail tip of the phi MR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of phi MR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with phi MR11 was also lysed by both proteins. Staphylococcus aureus strains on which phi MR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   

17.
Staphylococci cause bovine mastitis, with Staphylococcus aureus being responsible for the majority of the mastitis-based losses to the dairy industry (up to $2 billion/annum). Treatment is primarily with antibiotics, which are often ineffective and potentially contribute to resistance development. Bacteriophage endolysins (peptidoglycan hydrolases) present a promising source of alternative antimicrobials. Here we evaluated two fusion proteins consisting of the streptococcal λSA2 endolysin endopeptidase domain fused to staphylococcal cell wall binding domains from either lysostaphin (λSA2-E-Lyso-SH3b) or the staphylococcal phage K endolysin, LysK (λSA2-E-LysK-SH3b). We demonstrate killing of 16 different S. aureus mastitis isolates, including penicillin-resistant strains, by both constructs. At 100 μg/ml in processed cow milk, λSA2-E-Lyso-SH3b and λSA2-E-LysK-SH3b reduced the S. aureus bacterial load by 3 and 1 log units within 3 h, respectively, compared to a buffer control. In contrast to λSA2-E-Lyso-SH3b, however, λSA2-E-LysK-SH3b permitted regrowth of the pathogen after 1 h. In a mouse model of mastitis, infusion of 25 μg of λSA2-E-Lyso-SH3b or λSA2-E-LysK-SH3b into mammary glands reduced S. aureus CFU by 0.63 or 0.81 log units, compared to >2 log for lysostaphin. Both chimeras were synergistic with lysostaphin against S. aureus in plate lysis checkerboard assays. When tested in combination in mice, λSA2-E-LysK-SH3b and lysostaphin (12.5 μg each/gland) caused a 3.36-log decrease in CFU. Furthermore, most protein treatments reduced gland wet weights and intramammary tumor necrosis factor alpha (TNF-α) concentrations, which serve as indicators of inflammation. Overall, our animal model results demonstrate the potential of fusion peptidoglycan hydrolases as antimicrobials for the treatment of S. aureus-induced mastitis.  相似文献   

18.
【目的】揭示链球菌噬菌体裂解酶Ly7917催化域CHAP的核心功能域,为进一步改造裂解酶提供理论依据。【方法】通过表达纯化分别从N端截短的Ly7917及从C端截短的Ly CHAP各蛋白,基于平板裂解试验和浊度递减试验,比较各截短蛋白之间的活性差异,以及添加Ca2+后各蛋白的活性变化。【结果】发现催化域蛋白Ly CHAP与Ly7917全酶的活性差异不显著,Ly CHAP的N端序列对其活性影响较大,不宜截短;而C端依次截短后,活性逐渐降低。C端截短20个氨基酸的Ly CHAP1-130,在添加1 mmol/L Ca2+后活性最强。【结论】Ly7917催化域CHAP的核心功能域为1-130 aa,推测其具有Ca2+结合区域,并发现Ly CHAP1-130在Ca2+参与下裂菌活性可媲美Ly7917全酶。预示着Ly CHAP1-130可以替代全酶应用于之后的临床试验。  相似文献   

19.
A tailed bacteriophage, φMR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1–150] and the lysozyme (aa 401–624) domains but not the linker domain (aa 151–400) caused efficient lysis of S . aureus . Immunoelectron microscopy localized gp61 to the tail tip of the φMR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of φMR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with φMR11 was also lysed by both proteins. Staphylococcus aureus strains on which φMR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   

20.
Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus , this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus , Bacillus subtilis and S. thermophilus . Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号