首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
R. Robinson 《Genetica》1988,78(2):121-123
The three recognised colour varieties of the Hovawart breed of dog, black, black and gold and blonde, are due primarily to combinations of the mutant alleles solid black (A s ), black and tan (a t ) of the agouti series and the non-extension of black allele (e). The e allele is epistatic to the agouti alleles, thereby reducing the four possible phenotypes to three.  相似文献   

2.
Inheritance of colour and coat in the Belgian Shepherd dog   总被引:1,自引:0,他引:1  
R. Robinson 《Genetica》1988,76(2):139-141
The several colours and coats of the Belgian Shepherd dog are shown to be due primary to combinations of the following genes: dominant black (A s ), dominant yellow (A y ), chinchilla (ch), long hair (l) and wire hair (Wh). The gene for black and tan (a t ) is or has been present in the breed. All of the dominant yellow dogs exhibit a black facial mask and extensive suffusion of black guard hairs on the body.  相似文献   

3.
Black and tan animals have tan-coloured ventral body surfaces separated by sharp boundaries from black-coloured dorsal body surfaces. In the at mouse mutant, a retroviral 6 kb insertion located in the hair cycle-specific promoter of the murine Asip gene encoding agouti signalling protein causes the black and tan phenotype. In rabbits, three ASIP alleles are thought to exist, including an at allele causing a black and tan coat colour that closely resembles the mouse black and tan phenotype. The goal of our study was to identify the functional genetic variant causing the rabbit at allele. We performed a WGS-based comparative analysis of the ASIP gene in one black and tan and three wt agouti-coloured rabbits. The analysis identified 75 at-associated variants including an 11 kb deletion. The deletion is located in the region of the hair cycle-specific ASIP promoter and thus in a region homologous to the site of the retroviral insertion causing the at allele in mice. We observed perfect association of the genotypes at this deletion with the coat colour phenotype in 49 rabbits. The comparative analysis and the previous knowledge about the regulation of ASIP expression suggest that the 11 kb deletion is the most likely causative variant for the black and tan phenotype in rabbits.  相似文献   

4.
KK mouse is known as a polygenic model for non-insulin-dependent diabetes mellitus with moderate obesity. To identify the quantitative trait loci (QTLs) responsible for the body weight in KK, linkage analysis with 97 microsatellite markers was carried out into 192 F2 progeny, comprising 93 mice with a/a genotype at agouti locus and 99 mice with A y /a genotype, of a cross between C57BL/6J female and KK-Ay (Ay congenic) male, thereby the influence of A y allele on the quantitative regulation of body weight was also examined. In F2 a/a mice, we identified a QTL on Chromosome (Chr) 4, and two loci with suggestive linkage on Chrs 15 and 18. In F2 A y /a mice, a QTL was identified on Chr 6, and two loci with suggestive linkage were identified on Chrs 4 and 16. That the QTL on Chr 4 was held in common between F2 a/a and F2 A y /a progenies implies that this locus may be a primary component regulating body weight in KK and KK-Ay. These results suggest that the body weight in KK is controlled by multiple genes, and the different combination of loci is involved in the presence of A y allele. The QTL on Chr 6 seemed to determine the body weight by controlling fat deposition, because the linkage was identified on body weight and adiposity, and is suggested to be a component involved in the metabolic pathway in obesity caused by the A y allele. Received: 16 December 1997 / Accepted: 16 March 1998  相似文献   

5.
Because of ectopic overproduction of agouti protein, yellow alleles (Ay and Avy) of the murine agouti gene may secondarily modulate the synthesis, maturation (i.e., acetylation), and/or tissue deployment of α-Melanocyte Stimulating Hormone (MSH). We used HPLC to test the hypothesis that Ay/a mice exhibit altered concentrations of desacetyl-, monoacetyl-, and diacetyl-α-MSH in pituitaries, sera, and telogen hair bulbs when compared to black (a/a) mice. We also used RIA to measure total MSH in those same tissues of Ay/a, a/a, and white-bellied agouti (AwJ/AwJ) mice (Strain C57BL/6J). We found no evidence that Ay/a mice possessed an imbalance of des-, mono-, and diacetylated α-MSH species. However, radioimmunoassay (RIA) analyses of total MSH suggest that wild-type agouti mice (AwJ/AwJ) exhibited significantly decreased (P < 0.05) tissue levels of total α-MSH in pituitaries, sera, and regenerating hair bulbs when compared to those of mutant Ay/a and a/a mice.  相似文献   

6.
We compared tyrosinase activity (TH, DO, and native PAGE-defined isozymes) and melanin production in participate and soluble fractions of hairbulb melanocytes of lethal yellow (Ay/a C/C), nonagouti black (a/a C/C), and albino (a/a c2J/c2J) of 3-, 6-, 9-, and 12-day regenerating hairbulbs. With respect to tyrosine hydroxylase (TH) and dopa oxidase (DO) activities, Ay/a melanocytes possessed only 25-35% of the activity of a/a; there were no genotype differences in either the subcellular distribution of activity in soluble and particulate fractions or in the relative increases of activity over the 12-day developmental period. TH data on wild-type agouti (AwJ/AwJ) mice over the 3-11 day regeneration interval showed an activity intermediate between that of a/a and Ay/a; the rate of TH increase reflected black and yellow phases of the agouti hair cycle. Analyses of the number and densities of dopa-sensitive bands following native PAGE of 3-, 6-, 9-, and 12-day hairbulb fractions of a/a and Ay/a mice suggested stage-dependent patterns. A comparison of rates and amounts of melanin production in 3-, 6-, 9-, and 12-day fractions showed consistent melanin production in Ay/a to be 10-20% that of a/a; however, fold increases in melanin production over the four stages were similar between genotypes. Overall, tyrosinase activity data support the notion that agouti locus modification of tyrosinase activity is a graded or quantitative rather than a qualitative phenomenon.  相似文献   

7.
A quantitative trait locus (QTL) analysis was performed on the size and shape of the mandible in F2 mice between KK-A y and C57BL/6 J strains and the effect of the A y allele on the morphology of the mandible was analyzed. A total of 13 measurements were taken on each right mandible. By means of discriminant and canonical discriminant analyses, KK-A y males and KK males were exactly discriminated from each other. In contrast to its known effects on body weight, the A y allele reduced the overall size of the mandible. QTL analysis of the 13 measurements and on three principal components extracted from these measurements identified multiple QTLs. When F2 a/a and F2 A y /a were analyzed separately, 11 significant main-effect QTLs were identified in F2 a/a, whereas only two QTLs were identified in F2 A y /a. Although four significant interactions were identified, all were in F2 a/a. The A y allele thus made the difference in the size and shape of the mandible between strains obscure. Among mandible QTLs, those on Chrs 5 (Mssq6 and Mssq7) and 15 (Mssq14) were important. Mssq6 had an effect on the height of the posterior mandible. Mssq7 had an effect on mandible length. Mssq14 had an effect on the height of the anterior and posterior mandible. Mssq7 and Mssq14 also had an effect on the overall size. Thus, mandible QTLs have distinct and characteristic sites of action. Therefore, mandible morphology will be determined largely by the combination of these QTLs.  相似文献   

8.
9.
R. Robinson 《Genetica》1989,79(2):143-145
The predominant colour of the Anatolian Shepherd dog varies from a dark fawn to light red, with a variable black muzzle and face (mask). Evidence is presented that the colour is due to the dominant yellow allele (A y) of the agouti locus. Two other frequent colours are white spotting, due to the piebald allele (s p), and the chinchilla allele (ch). Two rarer colours are the agouti wolf-grey wild type (A +) and a light fawn with a blue facial mask, due to the dilution allele (d).  相似文献   

10.
11.
When histologically examined in utero at 105 hours post coitum embryos from A y /a × A y /a matings contained a mean (± SE) of 122.7 ± 6.5 nuclei per embryo; of these, 30.2 ± 2.4 nuclei were in the inner cell mass (ICM) and 92.5 ± 4.8 nuclei were within trophoblast cells. Embryos from A y /a × a/a matings contained a mean of 141.4 ± 10.6 nuclei per embryo of which 41.7 ± 4.5 nuclei were within the ICM and 99.7 ± 6.9 nuclei were trophoblastic. ICM cell numbers were significantly different between genotypes (P < 0.05) suggesting that homozygous A y allele expression selectively interferes with ICM versus trophoblast cell differentiation during preimplantation development.  相似文献   

12.
Compared with C57BL/6J-A y /a, KK-A y /a mice have yellow fur that is markedly darker. Furthermore, there is a considerable variation in the tone of color with a continuous range in F2 progeny produced from C57BL/6J females and KK-A y /a males. The aims of this study are to reveal the phenotypic differences between the two A y congenic strains and to elucidate the genetic factors responsible for the sooty yellow pigmentation in the KK background. On the basis of a chemical analysis, the sootiness in KK-A y /a was the result of increased eumelanin (PTCA) and decreased pheomelanin (AHP). A statistically significant QTL was identified on Chromosome (Chr) 15, responsible for the AHP content. No significant loci responsible for PTCA were identified. On the other hand, on the basis of an optical analysis for color difference and overall sootiness, significant evidence of linkage was identified on the proximal part of Chr 15, in the region similar to AHP QTL. The overall sootiness is thus controlled solely by the locus on Chr 15 in F2 progeny; however, the KK allele at this locus significantly increased the AHP content. Received: 8 September 1999 / Accepted: 18 April 2000  相似文献   

13.
We extracted the yellow melanin (phaeomelanin), black melanin (eumelanin), and mixed type of melanin from dorsal hair of dominant yellow (A y /a), non-agouti (a/a), and agouti (A/A) mice, respectively. Spectrophotometric and fluorescence spectrophotometric analysis demonstrated that the yellow melanin was qualitatively distinct from the black melanin and that the agouti hair contained both types of pigment.This work was supported by Grant 244004 from the Ministry of Education. Part of this work was presented at the X International Pigment Cell Conference.  相似文献   

14.
15.
This study was conducted to assess microenvironmental variability within integumental tissue of genetically identical mice with respect to a specific cellular response: cyclic synthesis of yellow and black pigment by hair bulb melanocytes. Crosses were performed within and between inbred strains of mice that were isogenic with the exception of a single gene substitution at the agouti locus. Agouti locus genes included the Avy, Aw, A, atd, at, ax, am, and a alleles. The pigment patterns of dorsal, flank, and ventral hairs of the first and third hair generations and of hairs growing in special integumentary areas such as the pinna, tail, and hind foot were studied. It was found that the amount of yellow pigment synthesized by hair bulb melanocytes within genetically identical mice is both agedependent and conditioned by the integumentary environment. Furthermore, the special integumentary regions produce hairs with a variety of pigment patterns in which the distribution and relative amounts of black and yellow pigments do not necessarily conform to dominance relationships expected among agouti locus alleles as judged by their effects on the pigmentation of the dorsal pelage. We conclude that within genetically uniform integumental tissues, microenvironmental differences occur and are reflected as alterations in the metabolic pattern of differentiated cells.  相似文献   

16.
The type of pigment synthesized in mammalian hair, yellow–red pheomelanin or black–brown eumelanin, depends on the interaction between Agouti protein and the Melanocortin 1 receptor. Although the genetics of pigmentation is broadly conserved across most mammalian species, pigment type-switching in domestic dogs is unusual because a yellow–tan coat with variable amounts of dark hair is thought to be caused by an allele of the Agouti locus referred to as fawn or sable (ay). In a large survey covering thirty seven breeds, we identified an Agouti allele with two missense alterations, A82S and R83H, which was present (heterozygous or homozygous) in 41 dogs (22 breeds) with a fawn or sable coat, but was absent from 16 dogs (8 breeds) with a black-and-tan or tricolor phenotype. In an additional 33 dogs (14 breeds) with a eumelanic coat, 8 (German Shepherd Dogs, Groenendaels, Schipperkes, or Shetland Sheepdogs) were homozygous for a previously reported mutation, non-agouti R96C; the remainder are likely to have carried dominant black, which is independent of and epistatic to Agouti. This work resolves some of the complexity in dog coat color genetics and provides diagnostic opportunities and practical guidelines for breeders.  相似文献   

17.
In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a15b) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.  相似文献   

18.
In a previous survey of endogenous proviruses among inbred mouse strains, the Xmv-10 provirus was found only in strains that carried the non-agouti (a) mutation (Frankel et al. J. Virol. 63: 1763–1774, 1989). To determine whether insertion of Xmv-10 caused the a mutation, we cloned a portion of Xmv-10 and its insertion site. Using a fragment of flanking cellular DNA as a Southern hybridization probe, we found that the Xmv-10 provirus was still present in revertant alleles of a to a tor A W.A restriction fragment length variant (RFLV) in cellular DNA at the Xmv-10 insertion site was found to be correlated with the presence or absence of the provirus among inbred strains of laboratory mice regardless of their agouti allele. This correlation did not extend to wild mice, however, in which none of the samples contained Xmv-10, yet one, Mus domesticus poschiavinus, contained the insertion site RFLV correlated with Xmv-10 in laboratory mice. Analysis of an intersubspecific backcross with RFLVs at the insertion sites of Xmv-10 and Emv-15 (an endogenous provirus associated with A y)revealed the following genetic map information: cen-A-0.31±0.31 cM-Emv-15-0.62±0.27 cM-Xmv-10-tel. Haplotype analysis of inbred strains in which a was not associated with Xmv-10 and in which A ywas not associated with Emv-15 demonstrated that these exceptions were explained most simply by a single recombination that disturbed the linkage relationships evident in most inbred strains. These results demonstrate that Xmv-10 did not cause the a mutation, suggest that insertion of Xmv-10 occurred recently in the evolution of laboratory mice, and show that the associations between agouti alleles and endogenous proviruses are due to linkage disequilibrium.  相似文献   

19.
20.
By light microscopic investigation of skin and wool specimens of newborn lambs, we discovered a previously unknown mechanism for melanosomes transport in the process of dermal papilla melanocytes regular mitosis and migration into the hair shaft. This mechanism plays a great role in hair pigmentation especially in dominant (ED/ED) and recessive (Aa/Aa) black lambs of all investigated breeds. The rate of pigment cell mitosis, proliferation, and migration differs greatly in lambs of investigated color genotypes. In black genotypes the rate of melanocyte mitosis is very high and is approximately the same as in the hair bulb matrix cells, whereas in brown and red genotypes this rate is much lower. Melanocyte mitosis in the light red and tan groups was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号