首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous paper we have reported on the structural perturbation of the erythrocyte membrane anion exchanger by a regular series of model amphiphiles, as shown by differential scanning calorimetry (Gruber, H.J. and Low, P.S., Biochim. Biophys. Acta, preceding article). Now the data are interpreted by a model in which the effects of amphiphile structure upon buffer-membrane partitioning are well separated from the dependence of the intrinsic potencies of membrane-bound amphiphiles upon amphiphile structure. The buffer-membrane partitioning situation was demonstrated to regularly change between extremes within a series of homologous amphiphiles, i.e. from a negligible to a predominant fraction of total amphiphile in the sample residing in the membrane. Based upon this demonstration a large number of reports on the chain length dependence of apparent potency could be reinterpreted in terms of chain length profiles of intrinsic potency, allowing for a comparison of the responses of various membrane proteins to homologous series of amphiphiles. The response patterns for chain length variation could be divided into three distinct classes: the intrinsic potency (i) can be independent of chain length over a very wide range of length, (ii) it can be rather independent up to a critical length where a sudden cut-off in potency occurs, or (iii) it can drop monotonically over a wide range of chain length. The intrinsic potency values of saturated fatty acids in destabilizing the anion exchanger were interpreted by very simple assumptions: only direct interactions between amphiphiles and target proteins and a simple amphiphile partition equilibrium between a pool of equivalent low affinity sites on the protein and the bulk lipid matrix. The observed monotonic decay of the intrinsic potency of saturated fatty acids with increasing chain length from C8 to C20 was translated into a constant increment of free energy by which each additional CH2 favors the transfer away from sites on the protein towards the bulk lipid matrix. Arguments were presented suggesting that the direct interaction between amphiphiles and target protein is completely nonspecific for alkyl chain length while the residual specificity for shorter over longer amphiphiles is due to the higher tendency of longer chains to preferentially bind in the bulk lipid matrix. Thus a completely new role of the lipid as a competitor, rather than a mediator, was postulated.  相似文献   

2.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C10:0 to C22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C14:1 to C24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis-trans form of oleic acid (C18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   

3.
Free fatty acids protect erythrocytes against hypotonic haemolysis in a certain low concentration range and become haemolytic at higher concentrations. The chain length dependence of this biphasic behaviour was investigated using human erythrocytes. The results can be summarized as follows: (i) A critical minimum chain length is required for both effects. Octanoic acid (C8) and fatty acids with a shorter chain length do not have any effect on the osmotic resistance of erythrocytes. (ii) Decanoic acid (C10) decreases the extent of hypo-osmotic haemolysis and does not become haemolytic at higher concentrations. (iii) Dodecanoic acid (C12) represents the minimum chain length for the typical concentration-dependent biphasic behaviour with protection against hypo-osmotic haemolysis at a certain low concentration range and subsequent haemolysis at higher concentrations. (iv) Tetradecanoic acid (C14) exhibits two concentration ranges of protection against hypo-osmotic haemolysis, each followed by haemolytic concentrations. (v) The observed effects are not correlated with the critical micellar concentrations of the investigated fatty acids.  相似文献   

4.
In the present paper, we report the results of a study on the in vivo localization of 51Cr-labeled lymphocytes with an altered lipid bilayer. In vitro treatment of lymphocytes with fatty acids (arachidic and linolenic acids) modifies the relative composition of plasma membrane fatty acids. Phospholipids of the plasma membrane of lymphocytes incubated with arachidic acid show a preferential increase of fatty acids with chain length between C:12 and C:16. Cells incubated with linolenic acid show an increase percentage of fatty acids C:16 to C:20 and the relative amount of the fatty acids with chain length superior to C:20 is higher in cells treated with linolenic than with arachidic acid. We have found that these alterations in plasma membrane fatty acid composition can modify the normal pattern of lymphocyte localization in vivo after iv transfer into syngeneic hosts. The possible role of factors such as cell to cell adhesion and/or fluidity of plasma membranes in the control of lymphocyte migration are discussed.  相似文献   

5.
The effect of altering cell membrane lipids on ion transport across isolated corneas was studied. Corneas mounted in Ussing-type chambers showed a rapid increase in short-circuit current following treatment with a variety of unsaturated fatty acids of varying chain length and unsaturation. Measurements of membrane fluidity which utilize immunofluorescence labelling of membrane proteins showed corneal epithelial cell membranes to be significantly more fluid following linoleic acid treatment. Uptake studies indicate rapid incorporation of [14C]linoleic acid into corneal cell membranes. Highly unsaturated fatty acids were found to have the greatest ability to stimulate chloride transport. Saturated fatty acids were tested and were found to have no effect on chloride transport at any concentration. It is proposed that unsaturated fatty acids activate chloride transport by increasing membrane lipid fluidity. The relationship of these parameters is discussed in terms of a mobile receptor model. We speculate that an increase in membrane lipid fluidity promotes lateral diffusion of membrane receptor proteins and enzymes, increasing protein-protein interactions within the membrane, ultimately resulting in the enhancement of cyclic AMP synthesis.  相似文献   

6.
The mobilization of fatty acids from rat and human fat cells is selective according to molecular structure, and notably carbon atom chain length. This study aimed at examining whether the release of individual fatty acids from triacylglycerols (TAG) by hormone-sensitive lipase (HSL) plays a role in the selectivity of fatty acid mobilization. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 18 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation degree from 0 to 3 double bond(s), was measured by comparing the composition of non-esterified fatty acids (NEFA) to that of the original TAG. The relative hydrolysis (% in NEFA/% in TAG) differed between fatty acids, being about 5-fold and 3-fold higher for the most (18:1n-7) than for the least (24:0) readily released fatty acid by recombinant rat and human HSL, respectively. Relationships were found between the chain length of fatty acids and their relative hydrolysis. Among 12-24 carbon atom saturated fatty acids, the relative hydrolysis markedly decreased (by about 5- and 3-times for recombinant rat and human HSL, respectively) with increasing chain length. We conclude that fatty acids are selectively released from TAG by HSL according to carbon atom chain length. These data provide insight on the mechanism by which fatty acids are selectively mobilized from fat cells.  相似文献   

7.
The effects of long-chain cis-unsaturated fatty acids with different alkyl chain lengths and different numbers of double bonds on aggregation of bovine platelets and membrane fluidity were investigated. All the cis-unsaturated fatty acids tested inhibited aggregation and at the same time increased membrane fluidity in accordance with their inhibitory effects. The saturated fatty acids and trans-unsaturated fatty acid tested for comparison had much lower or no effects on aggregation and membrane fluidity. The inhibitory effects of mono cis-unsaturated fatty acids increased with increase of their alkyl chain length. cis-Unsaturated fatty acids with two or more double bonds had more inhibitory effects than mono-unsaturated fatty acids. The position of the double bonds had less influence than the number of double bonds. We also examined the effects of cis-unsaturated fatty acids on membrane fluidity with diphenylhexatriene and anthroyloxy derivatives of fatty acids as probes and observed increased fluidity to be considerable in the membrane. The alcohol analogs of cis-unsaturated fatty acids also inhibited aggregation and increased membrane perturbation. These results suggest that the inhibition of platelet aggregation by cis-unsaturated compounds is due to perturbation of the lipid layer.  相似文献   

8.
The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.  相似文献   

9.
The lipid composition of cell membranes exerts a crucial influence on cell physiology. Indeed, one double bond triggers membrane fluidity, essential for cell functionality, but additional double bonds increase the susceptibility to peroxidation, which produces reactive compounds that impair the viability of cells. It has therefore been suggested, but never tested in an extensive comparative context, that the composition of membrane fatty acids has been optimized during evolution. A similar prediction has been made for fatty acid chain length, on which susceptibility to peroxidation also depends. Here I tested for stabilizing selection on fatty acid composition by evaluating the fitting of the single stationary peak (SSP) model of evolution to a large data set from 107 species of birds, against alternative evolutionary models. I found that across‐species variation in average chain length and in the proportion of monounsaturated fatty acids (MUFAs), but not in the proportion of polyunsaturated (PUFAs) nor saturated (SFAs) fatty acids, was better explained by SSP models than by other models. Results show optimum values of fatty acid chain length and proportion of MUFAs of 18 C atoms and 25.5% mol, respectively, the strength of stabilizing selection being particularly high in chain length. This is the first evidence of evolutionary optimization in fatty acid composition, suggesting that certain values may have been selected because of their adaptive capacity to minimize susceptibility to lipid peroxidation.  相似文献   

10.
The effects of arachidonic acid and other fatty acids on mitochondrial Ca2+ transport were studied. Cis-unsaturated fatty acids generally strongly inhibited mitochondrial Ca2+ uptake, induced a net Ca2+ efflux, and thereby increased the extramitochondrial Ca2+ concentration, whereas trans-unsaturated fatty acids were ineffective. Saturated fatty acids exhibited slight activity at chain lengths from C(10) to C(14) only. The structure-activity relationship and the inability of some of the effective fatty acids such as palmitoleic and myristoleic acid to be metabolized to eicosanoids suggest that Ca2+ release was induced by the fatty acids themselves and resulted from changes in the mitochondrial membrane bilayer structure. There was a correlation between Ca2+-releasing potency and reduction of mitochondrial membrane potential, which is the main driving force for mitochondrial Ca2+ uptake. There were, however, considerable differences compared with the effects of lysophospholipids on the membrane potential. The mechanism of action of fatty acids may be that of a fluidizing effect on the hydrophobic core of the membrane, thereby modulating the activity of integral membrane proteins of the respiratory chain.  相似文献   

11.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C 10:0 to C 22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C 14:1 to C 24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis - trans form of oleic acid (C 18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C 20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C 24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   

12.
The effect of various fatty acids on lipid peroxidation of liver microsomes induced by different methods in vitro was studied using oxygen uptake and malonaldehyde (MDA) production. It was observed that fatty acids with a single double bond are effective inhibitors of peroxidation. Stereo and positional isomers of oleic acid were equally effective as oleic acid. There was an absolute requirement for a free carboxyl group, since methyl esters of fatty acids and long-chain saturated and unsaturated hydrocarbons could not inhibit peroxidation. Saturated fatty acids with a chain length of 12-16 carbon atoms showed inhibition, whereas more than 18 carbon atoms reduced the inhibitory capacity. Fatty acids of lower chain length such as capric and caprylic acids did not show inhibition. Fatty acid inhibition was partially reversed by increasing the concentration of iron in the system. Peroxidation induced by methods which were independent of iron was not inhibited by fatty acids. It was observed that intestinal microsomes which were resistant to peroxidation due to the presence of nonesterified fatty acids in their membrane lipids were able to peroxidise by methods which do not require iron. These results suggest that certain fatty acids inhibit peroxidation by chelating available free iron. In addition, they may also be involved in competing with the esterified fatty acids in the membrane lipids which are the substrates for peroxidation.  相似文献   

13.
Elongation of fatty acids by microsomal fractions obtained from rat brain was measured by the incorporation of [2-14C]malonyl-CoA into fatty in the presence of palmitoyl-CoA or stearoyl-CoA. 2. Soluble and microsomal fractions were prepared from 21-day-old rats; density gradient centrifugation demonstrated that the stearoyl-CoA elongation system was localized in the microsomal fraction whereas fatty acid biosynthesis de novo from acetyl-CoA occurred in the soluble fraction. The residual activity de novo in the microsomal fraction was attributed to minor contamination by the soluble fraction. 3. The optimum concentration of [2-14C]malonyl-CoA for elongation of fatty acids was 25 mum for palmitoyl-CoA or stearoyl-CoA, and the corresponding optimum concentrations for the two primer acyl-CoA esters were 8.0 and 7.2 muM respectively. 4. Nadph was the preferred cofactor for fatty acid formation from palmitoyl-CoA or stearoyl-CoA, although NADH could partially replace it. 5. The stearoyl-CoA elongation system required a potassium phosphate buffer concentration of 0.075M for maximum activity; CoA (1 MUM) inhibited this elongation system by approx. 30%. 6. The fatty acids formed from malonyl-CoA and palmitoyl-CoA had a predominant chain length of C18 whereas stearoyl-CoA elongation resulted in an even distribution of fatty acids with chain lengths of C20, C22 and C24. 7. The products of stearoyl-CoA elongation were identified as primarily unesterified fatty acids. 8. The developmental pattern of fatty acid biosynthesis by rat brain microsomal preparations was studied and both the palmitoyl-CoA and stearoyl-CoA elongation systems showed large increases in activity between days 10 and 18 after birth.  相似文献   

14.
The effects of long-chain fatty acids (four saturated and two unsaturated fatty acids, one derivative) on phase transitions of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were examined in the low concentration region, and the results were compared with those for an inhalation anesthetic. The effects of all fatty acids on the pre- and main-transition temperatures of the DPPC bilayer membrane appeared in the concentration range of μM order while that of the anesthetic appeared in the mM order. The appearance modes of these ligand actions were significantly different from one another. The three differential partition coefficients of the ligands between two phases of the DPPC bilayer membrane were evaluated by applying the thermodynamic equation to the variation of the phase-transition temperatures. The DPPC bilayer membranes showed the different receptivity for the ligands; the saturated fatty acids had an affinity for gel phase whereas unsaturated fatty acids and an anesthetic had an affinity for liquid-crystalline phase to the contrary. In particular, the receptivity for the ligands in the gel phase markedly changed depending on kinds of ligands. The interaction modes between the DPPC and fatty acid molecules in the gel phase were considered from the hexagonal lattice model. The disappearance compositions of the pretransition by the fatty acids coincided with the compositions at which the membrane is all covered by the units in each of which two fatty acids molecules are regularly distributed in the hexagonal lattice in a different way, and the distribution depended on the chain length and existence of a double bond for the fatty acids. The interpretation did not hold for the case of the anesthetic at all, which proved that a number of anesthetic molecules act the surface region of the bilayer membrane nonspecifically. The present study clearly implies that DPPC bilayer membranes have high ability to recognize kinds of ligand molecules and can discriminate among them with specific interaction by the membrane states.  相似文献   

15.
Stimulation of vascular endothelial cells with agonists such as histamine and thrombin results in release of arachidonic acid from membrane lipids and subsequent eicosanoid synthesis. As shown previously, the agonist-stimulated deacylation is specific for arachidonate, eicosapentaenoate, and 5,8,11-eicosatrienoate. This study has utilized radiolabeled fatty acids differing in chain length and position of double bonds to further elucidate the fatty acyl specificity of agonist-stimulated deacylation. Replicate wells of confluent human umbilical vein endothelial cells were incubated with 14C-labeled fatty acids and then challenged with histamine, thrombin, or the calcium ionophore A23187. Comparison of the results obtained with isomeric eicosatetraenoic fatty acids with initial double bonds at carbons 4, 5, or 6 indicated that the deacylation induced by all three agonists exhibited marked specificity for the cis-5 double bond. Lack of stringent chain length specificity was indicated by agonist-stimulated release of 5,8,11,14- tetraenoic fatty acids with 18, 19, 20, and 21 carbons. Release of 5,8,14-[14C]eicosatrienoate was two-to threefold that of 5,11,14-[14C]eicosatrienoate, thus indicating that the cis-8 double bond may also contribute to the stringent recognition by the agonist-sensitive phospholipase. The present study has also demonstrated that histamine, thrombin, and A23187 do not stimulate release of docosahexaenoate from endothelial cells.  相似文献   

16.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

17.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

18.
A spectrophotometric method has been developed for the determination of long-chain unsaturated and hydroxy fatty acids in concentrated sulfuric acid. The assay is based on the absorbance produced in the 290 to 300-nm range from their reaction with sulfuric acid at 100°C. α,β-Unsaturated aliphatic acids give absorption bands at 235–240 nm and thus can be easily differentiated from unsaturated fatty acids having the double bond(s) at positions not conjugated with the carboxyl group. A certain minimum chain length is required for full development of the absorption band at 300 nm. Position and intensity of the so-formed absorption band is independent on the position and number of the double bonds or hydroxyl groups. Carboxyl groups are not essential, as unsaturated hydrocarbons and higher alcohols likewise react with sulfuric acid to produce the absorbing species at 300 nm, providing a minimum chain length of 5 carbon atoms is present. The nature of the absorbing species at 300 nm is discussed.  相似文献   

19.
In order to understand how subtle variations in lipid structure can influence the stability of an integral membrane protein, the purified, delipidated anion transport domain of human erythrocyte band 3 was reconstituted into a series of well-defined lipids and examined by differential scanning calorimetry. From the calorimetric scans, plots of denaturation temperature (Tm), enthalpy (delta Hd), and heat capacity (delta Cdp) as a function of phospholipid chain length, degree of unsaturation, headgroup type, and cholesterol content were constructed. The data show that the stability of the 55,000-dalton membrane-spanning domain of band 3 is exquisitely sensitive to the acyl chain length of its phospholipid environment, increasing almost linearly from a Tm of 47 degrees C in dimyristoleylphosphatidylcholine (C14:1) to 66 degrees C in dinervonylphosphatidylcholine (C24:1). The integral domain was also found to be significantly stabilized by increasing the degree of saturation of the fatty acyl chains and by elevating the cholesterol content of the membrane. Although band 3 was native in all reconstituted lipid systems, the transport protein's stability was clearly much greater in zwitterionic lipids (phosphatidylethanolamine and phosphatidylcholine) than anionic lipids (phosphatidylserine and phosphatidylglycerol). Enthalpy and delta Cdp values were generally within the ranges expected of globular proteins in the various reconstituted systems, except the values for the anionic and polyunsaturated phospholipids were anomalously low. Much of the data can be accounted for by the hypothesis that band 3 has a long hydrophobic cross-section and that a close match between the hydrophobic zone of the membrane-spanning protein and the nonpolar region of the bilayer is necessary for maximum protein stability. Because the integral domain of band 3 may be structurally representative of a larger group of transport proteins, the data should be useful in interpreting structural observations on protein-lipid interactions in other membrane systems.  相似文献   

20.
Effects of fatty acids on mitochondria: implications for cell death   总被引:7,自引:0,他引:7  
Fatty acids have prominent effects on mitochondrial energy coupling through at least three mechanisms: (i) increase of the proton conductance of the inner mitochondrial membrane; (ii) respiratory inhibition; (iii) opening of the permeability transition pore (PTP). Furthermore, fatty acids physically interact with membranes and possess the potential to alter their permeability; and they are also excellent respiratory substrates that feed electrons into the respiratory chain. Due to the complexity of their actions, the effects of fatty acids on mitochondrial function in situ are difficult to predict. We have investigated the mitochondrial and cellular effects of fatty acids of increasing chain length and degree of unsaturation in relation to their potential to affect mitochondrial function in situ and to cause cell death. We show that saturated fatty acids have little effect on the mitochondrial membrane potential in situ, and display negligible short-term cytotoxicity for Morris Hepatoma 1C1 cells. The presence of double bonds increases both the depolarizing effects and the cytotoxicity, but these effects are offset by the hydrocarbon chain length, so that more unsaturations are required to observe an effect as the hydrocarbon chain length is increased. With few exceptions, depolarization and cell death are due to opening of the PTP rather than to the direct effects of fatty acids on energy coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号