首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase catalyzes the degradation of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of the plant hormone ethylene, into α-ketobutyrate and ammonia. The enzyme has been detected in a limited number of bacteria and plays a significant role in sustaining plant growth and development under biotic and abiotic stress conditions by reducing stress-induced ethylene production in plants. We have screened 32 fluorescent Pseudomonas sp. isolated from rhizosphere and non-rhizosphere soils of different crop production systems for drought tolerance using polyethylene glycol 6000 (PEG 6000). Nine of these isolates were tolerant to a substrate metric potential of ?0.30 MPa (15 % PEG 6000) and therefore considered to be drought-tolerant. All of these drought-tolerant isolates were screened for ACC deaminase activity using ACC as the sole nitrogen source, and one (SorgP4) was found to be positive for ACC, producing 3.71?±?0.025 and 1.42?±?0.039 μM/mg protein/h of α-ketobutyrate under the non-stress and drought stress condition, respectively. The isolate SorgP4 also showed other plant growth-promoting traits, such as indole acetic acid production, phosphate solubilization, siderophore and hydrogen cyanide production. The ACC deaminase gene (acdS) from the isolate SorgP4 was amplified, and the nucleotide sequence alignment of the acdS gene showed significant homology with acdS genes of NCBI Genbank. The 16S rRNA gene sequencing analysis identified the isolate as Pseudomonas fluorescens. Both sequences have been submitted to the NCBI GenBank under the accession numbers JX885767 and KC192771 respectively.  相似文献   

2.
The enzyme ACC deaminase encoded by acdS gene is known to play a significant role in sustaining plant growth and development under stress conditions by reducing stress induced ethylene production inside the plant. In the present investigation, Mesorhizobium ciceri isolates from chickpea plants growing under drought conditions were screened for the presence of acdS gene. Full length acdS gene from one of the isolates was successfully amplified. This is the first report showing presence of acdS gene in Mesorhizobium ciceri. Gene sequence analysis revealed that there were deletions at two positions in this gene as compared to M. loti acdS gene.  相似文献   

3.
The ability of streptomycete actinomycetes to promote growth of tomato through the production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase was evaluated under gnotobiotic and greenhouse conditions. To achieve this, 64 isolates of Streptomyces spp. obtained from a tomato rhizosphere in the United Arab Emirates were initially selected for their ability to produce ACC deaminase as well as indole-3-acetic acid (IAA) and subsequently for their rhizosphere competence as root colonizers. Of the two selected ACC deaminase-producing isolates showing exceptional rhizosphere competence, S. filipinensis no. 15 produced both ACC deaminase and IAA, whilst S. atrovirens no. 26 did not produce IAA. Under greenhouse conditions, the application of S. filipinensis no. 15 or S. atrovirens no. 26 resulted in the reduction of the endogenous levels of ACC, the immediate precursor of ethylene, in both roots and shoots and increased plant growth. Plant growth promotion was most pronounced in the presence of S. filipinensis no. 15 compared to S. atrovirens no. 26. This relative superiority in performance shows the advantage conferred to S. filipinensis no. 15 due to its ability to produce both IAA and ACC deaminase. In comparison, an ACC deaminase-producing isolate of S. albovinaceus no. 41 which was neither rhizosphere-competent nor capable of producing IAA, failed to promote plant growth compared to S. filipinensis no. 15 or S. atrovirens no. 26 although the growth promotion obtained by S. albovinaceus no. 41 was significant compared to control. The application of S. globosus no. 8, which was not rhizosphere-competent and did not produce detectable levels of ACC deaminase or IAA did not promote plant growth. These results indicate the importance of rhizosphere competence. In conclusion I report the production of ACC deaminase by streptomycete actinomycetes and its ability to enhance plant growth through reduction in the in planta levels of endogenous ACC and the consequent lowering of endogenous ethylene levels in plant tissues.  相似文献   

4.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

5.
6.
Piper nigrum is an interesting plant to study the endophytic microbial factors affecting plant growth because of its unique features. Endophytic bacterial isolation from the plant resulted in the isolation of twelve bacterial isolates which were screened for various plant growth promoting properties like phosphate solubilization, ACC deaminase production, siderophore production etc. Interestingly, seven isolates were found to have IAA biosynthetic potential. Bacterial isolates with multiple plant growth promoting properties were studied for their growth promoting effect on Vigna radiata seedlings. This resulted in the identification of Klebsiella sp. (PnB 10) and Enterobacter sp. (PnB 11) as the isolates with excellent growth promoting properties. The results confirm promising applications of the endophytic bacterial isolates obtained in the study and also their possible growth promoting effect in P. nigrum.  相似文献   

7.
ACC脱氨酶是一种有效降低逆境乙烯含量的外源促生物质,该酶在干旱、盐胁迫及重金属污染等逆境条件下能显著提高农作物的抗逆性和增加产量,深入挖掘ACC脱氨酶的应用价值对农业可持续发展具有重要的意义.该文综述了ACC脱氨酶的作用机制及酶活性的影响因素,并重点论述了ACC脱氨酶在提高作物抗逆性及产量和转基因技术等方面应用研究进展.分析了关于拓展ACC脱氨酶取材和应用范围,量化含ACC脱氨酶的根际微生物定殖能力等问题,并展望了 ACC脱氨酶在植物修复领域的应用以及建立ACC脱氨酶转基因技术体系等方面的研究前景和意义.  相似文献   

8.
Madhaiyan M  Poonguzhali S  Sa T 《Planta》2007,226(4):867-876
The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor l-α-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.  相似文献   

9.
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase converts ACC, a precursor of the plant hormone ethylene, into ammonia and ??-ketobutyrate. ACC deaminase is widespread among the rhizobia in which it might play a crucial role in protecting rhizobia against inhibitory effects of ethylene synthesized by the host plant in response to the nodulation process. The beneficial action of this enzyme was demonstrated in several rhizobia such as Mesorhizobium loti and Rhizobium leguminosarum where knock-out mutants of the ACC deaminase gene showed nodulation defects. The genome of the slow-growing rhizobial species Bradyrhizobium japonicum also carries an annotated gene for a putative ACC deaminase (blr0241). Here, we tested the possible importance of this enzyme in B. japonicum by constructing an insertion mutant of blr0241 and studying its phenotype. First, the activity of ACC deaminase itself was measured. Unlike the B. japonicum wild type, the blr0241 mutant did not show any enzymatic activity. By contrast, the mutant was not impaired in its ability to nodulate soybean, cowpea, siratro, and mungbean. Likewise, symbiotic nitrogen fixation activity remained unaffected. Furthermore, a co-inoculation assay with the B. japonicum wild type and the blr0241 mutant for soybean and siratro nodulation revealed that the mutant was not affected in its competitiveness for nodulation and nodule occupation. The results show that the role previously ascribed to ACC deaminase in the rhizobia cannot be generalized, and species-specific differences may exist.  相似文献   

10.

Background

All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or produce indole acetic acid (IAA). Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested.

Methodology/ Principal Findings

We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization); and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ) reinforced the conclusion that the PGP effects are not highly conserved.

Conclusions/ Significance

We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.  相似文献   

11.
This study was conducted to investigate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Pseudomonas fluorescens strain REN1 and its ability to reduce ethylene levels produced during stress, endophytically colonize and promote the elongation of the roots of rice seedlings under gnotobiotic conditions. We isolated 80 bacteria from inside roots of rice plants grown in the farmers’ fields in Guilan, Iran. All of the isolates were characterized for plant growth promoting (PGP) traits. In addition, the colonization assay of these isolates on rice seedlings was carried out to screen for competent endophytes. The best bacterial isolate, based on ACC deaminase production, was identified and used for further study. 16S rDNA sequence analysis revealed that the endophyte was closely related to Pseudomonas fluorescens. The results of this study showed ACC deaminase containing P. fluorescens REN1 increased in vitro root elongation and endophytically colonized the root of rice seedlings significantly, as compared to control under constant flooded conditions. The trait of low amount of indole-3-acetic acid (IAA) production (<15 μg mL−1) and the high production of ACC deaminase by bacteria may be main factors in colonizing rice seedling roots compared to other PGP traits (siderophore production and phosphate solubilization) in this study. Endophytic IAA and ACC deaminase-producing bacteria may be preferential selections by rice seedlings. Therefore, it may be suggested that the utilization of ACC as a nutrient gives the isolates advantages in more endophytic colonization and increase of root length of rice seedlings.  相似文献   

12.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   

13.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

14.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

15.
In addition to the characterized mechanisms responsible for many direct effects of plant growth promoting bacteria (PGPB) on plants, it has been suggested that a number of PGPB contain the enzyme ACC deaminase that catalyzes degradation of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, into α-ketobutyrate and ammonia. As part of an effort to obtain an ACC deaminase encoding gene from a collection of soil samples, only one bacterial isolate, Pseudomonas fluorescens FY32 was capable of growing on ACC as a sole source of nitrogen. The ACC deaminase gene was amplified from the above isolate by polymerase chain reaction (PCR) giving an expected DNA fragment, 1017 bp. Sequence analysis of the fragment showed that it was highly homologous (94% and 98% identities at nucleotide and amino acid levels, respectively) to the previously characterized acdS gene from Pseudomonas sp. 6G5. Furthermore, fusion of the ACC deaminase ORF with lacZ gene resulted in the expression of active enzyme in Escherichia coli. In addition, further analyses revealed that the acdS gene was plasmid-encoded so that a large plasmid (pFY32) with almost 50 kb in size was identified from this bacterium. Furthermore, transfer of pFY32 into E. coli DH5α proved its ACC deaminase activity. This result was in accordance with previous reports suggesting horizontal transfer of the acdS gene. However, it needs more investigation to identify whether this pFY32 plasmid has undergone lateral gene transfer during the evolutionary process.  相似文献   

16.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

17.

Background and aims

Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated.

Methods

A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N2-fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified.

Results

Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium. Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues.

Conclusions

These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.  相似文献   

18.
Madhaiyan M  Poonguzhali S  Ryu J  Sa T 《Planta》2006,224(2):268-278
We report the presence of ACC deaminase in Methylobacterium fujisawaense and its lowering of ethylene levels and promotion of root elongation in canola seedlings under gnotobiotic conditions. To test a part of the previous model proposed for ACC deaminase producing bacteria with Methylobacterium, ACC levels and various enzyme activities were monitored in canola. Lower amounts of ACC were present in the tissues of seeds treated with M. fujisawaense strains than in control seeds treated with MgSO4. Though the increased activities of ACC synthase in the tissue extracts of the treated seedlings might be due to bacterial indole-3-acetic acid, the amount of ACC was reduced due to bacterial ACC deaminase activity. The activities of ACC oxidase, the enzyme catalyzing conversion of ACC to ethylene remained lower in M. fujisawaense treated seedlings. This consequently lowered the ethylene in plants and prevented ethylene inhibition of root elongation. Our results collectively suggest that Methylobacterium commonly found in soils, as well as on the surfaces of leaves, seeds, and in the rhizosphere of a wide variety of plants could be better exploited to promote plant growth.  相似文献   

19.
20.
[目的]获得具有产ACC、IAA,铁载体,能固氮或解磷的潜在促生菌株.[方法]通过稀释涂布的方法,从麻疯树根际土壤中分离得到98株细菌,从中选取28株以产l-氨基环丙烷-1-羧酸(ACC)脱氨酶为主要促生指标进行筛选,同时检测了其产吲哚乙酸(IAA)、固氮、解磷及铁载体等促生指标的能力.[结果]结果显示,46%的菌株能产ACC脱氨酶,其含量最高可达到128.308 μmol α-KA/(mg.h),68%的菌株能产生IAA,54%的菌株有固氮的能力,32%的菌株有解磷的能力.少量菌株同时具有产ACC脱氨酶、IAA,固氮,解磷等能力.挑选代表性菌株进行16S rRNA序列分析,这些菌株属于芽孢杆菌属(Bacillus)、节杆菌属(Arthrobacter)、假单胞菌属(Pseudomonas)和产碱杆菌属(Advenella)等8个属,其中多数菌株(50%)属于芽孢杆菌属,系统发育分析表明菌株KLBMP 4817、KLBMP 4821和KLBMP 4824为窄食单胞菌属(Stenotrophomonas)和类芽孢杆菌属(Paenibacillus)的潜在新种.[结论]攀枝花麻疯树根际土壤细菌中含有丰富的遗传多样性,且存在大量的促生菌株.其中,菌株KLBMP 4804产ACC脱氨酶含量最高.菌株KLBMP4820产IAA含量最显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号