首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-L-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16(Ink4a), a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.  相似文献   

2.
Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process.  相似文献   

3.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

4.
Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.  相似文献   

5.
6.
Mammalian cells may undergo permanent growth arrest/senescence when they incur excessive DNA damage. As a key player during DNA damage response (DDR), p53 transactivates an array of target genes that are involved in various cellular processes including the induction of cellular senescence. Chemokine receptor CXCR2 was previously reported to mediate replicative and oncogene‐induced senescence in a DDR and p53‐dependent manner. Here, we report that CXCR2 is upregulated in various types of cells in response to genotoxic or oxidative stress. Unexpectedly, we found that the upregulation of CXCR2 depends on the function of p53. Like other p53 target genes such as p21, CXCR2 is transactivated by p53. We identified a p53‐binding site in the CXCR2 promoter that responds to changes in p53 functional status. Thus, CXCR2 may act downstream of p53. While the senescence‐associated secretory phenotype (SASP) exhibits a kinetics that is distinct from that of CXCR2 expression and does not require p53, it reinforces senescence. We further showed that the cellular senescence caused by CXCR2 upregulation is mediated by p38 activation. Our results thus demonstrate CXCR2 as a critical mediator of cellular senescence downstream of p53 in response to DNA damage.  相似文献   

7.
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.  相似文献   

8.
We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited TOR and prevented the expression of some senescent markers, despite high levels of p21 and cell cycle arrest. In the presence of serum, p21-arrested cells irreversibly lost proliferative potential. In contrast, when cells were arrested by p21 in the absence of serum, they retained the capacity to resume proliferation upon termination of p21 induction. In normal human cells such as WI38 fibroblasts and retinal pigment epithelial (RPE) cells, serum starvation caused quiescence, which was associated with low levels of cyclin D1, inactive TOR and slim-cell morphology. In contrast, cellular senescence with high levels of TOR activity was induced by doxorubicin (DOX), a DNA damaging agent, in the presence of serum. Inhibition of TOR partially prevented senescent phenotype caused by DOX. Thus growth stimulation coupled with cell cycle arrest leads to senescence, whereas quiescence (a condition with inactive TOR) prevents senescence.  相似文献   

9.
10.
11.
12.
The p53 tumor suppressor gene can induce either apoptosis or a permanent growth arrest (also termed senescence) phenotype in response to cellular stresses. We show that the increase in intracellular reactive oxygen species (ROS) associated with the magnitude of p53 protein expression correlated with the induction of either senescence or apoptosis in both normal and cancer cells. ROS inhibitors ameliorated both p53-dependent cell fates, implicating ROS accumulation as an effector in each case. The absence of Bax or PUMA strongly inhibited both p53-induced apoptosis and ROS increase, indicating an important role these p53 targets affecting mitochondrial function genes in p53-mediated ROS accumulation. Moreover, physiological p53 levels in combination with an exogenous ROS source were able to convert a p53 senescence response into apoptosis. All of these findings establish a critical role of ROS accumulation and mitochondrial function in p53-dependent cell fates and show that other ROS inducers can collaborate with p53 to influence these fate decisions. Thus, our studies imply that therapeutic agents that generate ROS are more likely to be toxic for normal cells than p53-negative tumor cells and provide a rationale for identifying therapeutic agents that do not complement p53 in ROS generation to ameliorate the cytotoxic side effects in normal cells.  相似文献   

13.
14.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

15.
The induction of senescence, an irreversible growth arrest, in cancer cells is regarded as a mean to halt tumor progression. The phytoalexin resveratrol (RV) is known to possess a variety of cancer-preventive, -therapeutic, and -chemosensitizing properties. We report here that chronic treatment with RV in a subapoptotic concentration induces senescence-like growth arrest in tumor cells. In contrast to the widely accepted antioxidant property of RV, we demonstrate that one causative stimulus for senescence induction by chronic RV is an increased level of reactive oxygen species (ROS). The ROS formed upon RV exposure include hydrogen peroxide and superoxide and originate largely from mitochondria. Consistently, co-incubation with the antioxidant N-acetyl cysteine interfered with RV-mediated reactivation of the senescence program. Molecular mediators on the way from increased ROS levels to the observed growth arrest include p38 MAPK, p53, and p21. Moreover, we provide evidence that RV-initiated replication stress, apparent by activation of the ataxia telangiectasia-mutated kinase pathway, is associated with increased ROS levels and senescence induction. This is the first report linking cell cycle effects with a pro-oxidant and pro-senescent effect of RV in cancer cells.  相似文献   

16.
Nek6 is an NIMA-related kinase that plays a critical role in mitotic cell cycle progression. Recent studies have shown that Nek6 is upregulated in various human cancers, but the function of Nek6 in tumorigenesis is largely unknown. Here, we examined the role of Nek6 in cellular senescence. Our data revealed that Nek6 expression is decreased both in both the replicative senescence of human normal fibroblasts and premature senescence induced by p53 expression in EJ human bladder cancer cells and H1299 human lung cancer cells. Interestingly, the enforced expression of Nek6 in EJ and H1299 cells completely suppresses p53-induced senescence, whereas the expression of kinase-dead Nek6 did not affect p53-induced senescence. Mechanistic studies revealed that cell cycle arrest in the G1 and G2/M phases, as well as the reduction of cyclin B and cdc2 protein level upon p53 expression were significantly reduced by Nek6 overexpression. In addition, p53-induced increases in intracellular levels of ROS were also inhibited in cells overexpressing Nek6. These results suggest that the downregulation of Nek6 expression is required for the onset of p53-induced cellular senescence and imply a possible role of Nek6 in tumorigenesis.  相似文献   

17.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

18.
In this study, we describe novel functions of the anti-apoptotic Bcl-2 family proteins. Bcl-x(L) and E1B-19K were found to inhibit p53-induced irreversible growth arrest and senescence, but not to inhibit transient growth arrest, implying that Bcl-x(L) and E1B-19K are specifically involved in senescence without participating in growth arrest. We provide several lines of evidences showing that the functions of Bcl-x(L) and E1B-19K to prevent generation of reactive oxygen species (ROS) are important to inhibit senescence induction. First, we found that that ROS are increased during p53-induced senescence. Moreover, Bcl-x(L) and E1B-19K inhibit this p53-induced ROS generation. Second, antioxidants prevent the induction of senescence and ROS by p53, but not the persistence of the senescence phenotype. Third, the anti-senescence functions of Bcl-x(L) and E1B-19K were suppressed by adding exogenous ROS. These results suggest that Bcl-x(L) and E1B-19K inhibit senescence induction by preventing ROS generation. Furthermore, p38 kinase was found to be activated during p53-induced senescence, but not in cells expressing Bcl-x(L) or E1B-19K, or in cells treated with anti-oxidants. Consistently, a chemical inhibitor of p38 kinase, SB203580, was found to inhibit p53-induced senescence, but only when treated before the cellular commitment to senescence, implying that p38 kinase is necessary for senescence induction. Therefore, Bcl-x(L) and E1B-19K inhibit p53-induced senescence by preventing ROS generation, which in turn leads to the activation of p38 kinase. These results also suggest that the oncogenic potential of Bcl-2 is due to its ability to inhibit senescence as well as apoptosis.  相似文献   

19.
We have previously found that nonenzymatically glycated collagen I (GC), mimicking diabetic microenvironment, can induce senescent phenotype in early passage human umbilical vein endothelial cells (HUVECs). In the present study, we explored the functional involvement of cell cycle checkpoint pathways in initiating GC-induced premature endothelial cell senescence. When compared with native collagen, early passage HUVECs showed increased p53, p21(CIP1) (p21), and p16(INK4a) (p16) mRNA expression after exposure to GC. Twenty-four hours after transfection of p16, p21, and p53-enhanced green fluorescent protein (EGFP) recombinant plasmids, HUVECs entered G(1)-phase cell cycle arrest. By days 3 and 5, HUVECs transfected with p16-EGFP showed an increased proportion of senescent cells, and this increase was more prominent in the GFP-positive cell population, which exhibited 68% of senescent cells. Transfection of p21 also induced senescence but only by day 5. Cotransfection of p16 and p21 showed no additive effect. Transfection of p21 or p53 induced apoptosis in HUVECs. Next, we suppressed endogenous p53, p21, p16, or retinoblastoma (Rb) gene expression through small interference RNA strategy and investigated their influence in p16- and p21-initiated endothelial cell senescence. Analysis indicated that suppression of p53 expression can abolish senescence induced by p16 overexpression. Paradoxically, this effect was not observed when p21 was suppressed. On the other hand, suppression of Rb eliminated senescence initiated by either p16 or p21 overexpression. In summary, the p53/p21 pathway is mainly responsible for GC-induced apoptosis, but the coordinated activation of the p53/p21 and p16 pathway is responsible for GC-induced endothelial cell senescence through a Rb-dependent mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号