首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2O2‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p16INK4a and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked H2O2‐induced superoxide formation, NADPH oxidase levels and VCAM‐1, ICAM‐1, IL‐6 and miR‐34a synthesis. Kallistatin reversed H2O2‐mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)‐2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti‐senescence and anti‐oxidant effects were attributed to SIRT1‐mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up‐regulated Let‐7g, whereas Let‐7g inhibitor abolished kallistatin's effects on miR‐34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium‐specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild‐type mouse endothelial cells, and H2O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let‐7g, SIRT1, eNOS, catalase and SOD‐1 mRNA levels, and elevated miR‐34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let‐7g‐mediated miR‐34a‐SIRT1‐eNOS pathway.  相似文献   

2.
    
The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30?min. Blood samples were collected immediately before and after diving, 3 and 6?h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6?h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3?h after diving, while 6?h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3?h after diving. Interestingly, SIRT3 expression was significantly increased 6?h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.  相似文献   

3.
    
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.  相似文献   

4.
人源性激肽释放酶结合蛋白(Kallistatin,Kal)是一种负性急性期内源性蛋白,与多种内皮相关性生理和病理过程密切相关,如血管生成及损伤修复、炎症、心功能不全、肾损伤、糖尿病等。炎症和氧化应激可引起内皮功能障碍,而Kal可抑制肿瘤坏死因子α引起的内皮细胞活化,通过KLF4-eNOS、PI3K-AKT-eNOS和AKT-FOXO1等信号通路,增加内皮细胞NO合酶的表达和NO生成,抑制内皮细胞损伤和凋亡。动物实验显示,Kal表达增加可减弱氧化应激诱导的细胞凋亡和器官损伤。基于内皮细胞所处的状态或来源,如健康或损伤情况,成熟内皮细胞或内皮祖细胞,Kal的作用可能有所区别。内皮细胞是参与肿瘤生长与转移的关键因素已达成共识,但肿瘤新生血管形成的机制尚待确认。Kal可诱导肿瘤内皮细胞凋亡,抑制肿瘤新生血管生成和肿瘤生长的能力已被证实。临床前研究结果表明,Kal具有多种药理作用,对氧化应激相关性疾病,特别是肿瘤治疗具有应用前景,但其药理作用的分子机制仍需深入探讨。  相似文献   

5.
The function of microRNA-34a (miR-34a) in transdifferentiation of glioma stem cells (GSCs) into vascular endothelial cells (VECs) was explored by focusing on Notch ligand Delta-like 1 (Dll1). MiR-34a mimics was transfected into CD133 + glioma cell U251. The angiogenesis feature of miR-34a transfected U251 cells was investigated and the expressions of CD31, CD34, Vwf, Notch 1, and Dll1 were quantified. Length of branching vessel-like structures in the miR-34a transfected U251 cells was significantly higher than control cells. The VEC feature of miR-34a overexpressed U251 cells was further confirmed by the expressions of CD31, CD34, and vWF. Transfection of miR-34a decreased the expression of Notch 1 and Dll1. Furthermore, the miR-34a overexpression-enhanced tube formation of GSCs was suppressed when the decreased expression of Dll1 was restored. The current study highlighted the potential of miR-34a as an inducer in GSCs’ transdifferentiation into VECs by targeting Dll1.  相似文献   

6.
    
ABSTRACT

Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using ppargc1a?/- VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs. Abnormal autophagosomes were observed in VSMCs in aortas of ppargc1a?/- mice. ppargc1a?/- VSMCs in culture presented reductions in LC3-II levels; in autophagosome number; and in the expression of SQSTM1 (protein and mRNA), LAMP2 (lysosomal-associated membrane protein 2), CTSD (cathepsin D), and TFRC (transferrin receptor). Reduced SQSTM1 protein expression was also observed in aortas of ppargc1a?/- mice and was upregulated by PPARGC1A overexpression, suggesting that SQSTM1 is a direct target of PPARGC1A. Inhibition of autophagy by 3-MA (3 methyladenine), spautin-1 or Atg5 (autophagy related 5) siRNA stimulated senescence. Rapamycin rescued the effect of Atg5 siRNA in Ppargc1a+/+ , but not in ppargc1a?/- VSMCs, suggesting that other targets of MTOR (mechanistic target of rapamycin kinase), in addition to autophagy, also contribute to senescence. Sqstm1 siRNA increased senescence basally and in response to AGT II (angiotensin II) and zinc overload, two known inducers of senescence. Furthermore, Sqstm1 gene deficiency mimicked the phenotype of Ppargc1a depletion by presenting reduced autophagy and increased senescence in vitro and in vivo. Thus, PPARGC1A upregulates autophagy reducing senescence by a SQSTM1-dependent mechanism. We propose SQSTM1 as a novel target in therapeutic interventions reducing senescence.  相似文献   

7.
Elis S  Wu Y  Courtland HW  Sun H  Rosen CJ  Adamo ML  Yakar S 《Aging cell》2011,10(3):547-550
Although the literature suggests a protective (anabolic) effect of insulin-like growth factor-1 (IGF-1) on the musculoskeletal system during growth and aging, there is evidence that reductions in IGF-1 signaling are advantageous for promoting an increase in life span through reduction in oxidative stress-induced tissue damage. To better understand this paradox, we utilized the hepatocyte-specific IGF-1 transgenic (HIT) mice, which exhibit 3-fold increases in serum IGF-1, with normal IGF-1 expression in other tissues, and mice with an IGF-1 null background that exclusively express IGF-1 in the liver, which thereby deliver IGF-1 by the endocrine route only (KO-HIT mice). We found that in the total absence of tissue igf1 gene expression (KO-HIT), increases in serum IGF-1 levels were associated with increased levels of lipid peroxidation products in serum and increased mortality rate at 18 months of age in both genders. Surprisingly, however, we found that in female mice, tissue IGF-1 plays an important role in preserving trabecular bone architecture as KO-HIT mice show bone loss in the femoral distal metaphysis. Additionally, in male KO-HIT mice, increases in serum IGF-1 levels were insufficient to protect against age-related muscle loss.  相似文献   

8.
    
Idiopathic pulmonary fibrosis (IPF) is a severe, incurable, age-associated respiratory disorder that has gained significance because of its unknown etiology and lack of therapeutic approaches. IPF causes maximum damage to the alveolar epithelial cells, thereby leading to lung remodeling and initiating epithelial to mesenchymal transition (EMT). The actual molecular mechanisms underlying IPF still remain unclear, and knowledge about these mechanisms would be helpful in its diagnosis. Sirtuins (Sirt) are class of NAD+-dependent proteins, widely known to exert positive and protective effects on age-related diseases such as diabetes, cancer, and so on, and are also involved in regulating IPF. The sirtuin family comprises of seven members (Sirt1 to Sirt7), out of which Sirt1, Sirt3, Sirt6, and Sirt7 exert positive effects on IPF. Sirt1 is associated with aging and inhibits cellular senescence and fibrosis. Sirt1 is well recognized in controlling pulmonary fibrosis and is also considered as a prime positive mediator of EMT. The expressions of Sirt3 protein tend to decline in IPF patients; hence it is known as an anti-fibrotic protein. Sirt6 indeed has been proven to reduce EMT during IPF. Decreased levels of Sirt7 during IPF regulate lung fibroblasts. Hence, active levels of Sirt1, Sirt3, Sirt6, and Sirt7 can be attractive target models to elucidate a novel potential therapeutic approach for IPF. In this prospect, we have discussed the role of Sirtuins in pulmonary fibrosis by exploring the recent research evidence that highlight the role of sirtuins and also describes their protective effects.  相似文献   

9.
    
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC?/? mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC?/?CDKN1A?/? mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.  相似文献   

10.
    
The alteration of age‐related molecules in the bone marrow microenvironment is one of the driving forces in osteoporosis. These molecules inhibit bone formation and promote bone resorption by regulating osteoblastic and osteoclastic activity, contributing to age‐related bone loss. Here, we observed that the level of microRNA‐31a‐5p (miR‐31a‐5p) was significantly increased in bone marrow stromal cells (BMSCs) from aged rats, and these BMSCs demonstrated increased adipogenesis and aging phenotypes as well as decreased osteogenesis and stemness. We used the gain‐of‐function and knockdown approach to delineate the roles of miR‐31a‐5p in osteogenic differentiation by assessing the decrease of special AT‐rich sequence‐binding protein 2 (SATB2) levels and the aging of BMSCs by regulating the decline of E2F2 and recruiting senescence‐associated heterochromatin foci (SAHF). Notably, expression of miR‐31a‐5p, which promotes osteoclastogenesis and bone resorption, was markedly higher in BMSCs‐derived exosomes from aged rats compared to those from young rats, and suppression of exosomal miR‐31a‐5p inhibited the differentiation and function of osteoclasts, as shown by elevated RhoA activity. Moreover, using antagomiR‐31a‐5p, we observed that, in the bone marrow microenvironment, inhibition of miR‐31a‐5p prevented bone loss and decreased the osteoclastic activity of aged rats. Collectively, our results reveal that miR‐31a‐5p acts as a key modulator in the age‐related bone marrow microenvironment by influencing osteoblastic and osteoclastic differentiation and that it may be a potential therapeutic target for age‐related osteoporosis.  相似文献   

11.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

12.
13.
14.
15.
  总被引:6,自引:0,他引:6  
Carnosine attenuates the development of senile features when used as a supplement to a standard diet of senescence accelerated mice (SAM). Its effect is apparent on physical and behavioral parameters and on average life span. Carnosine has a similar effect on mice of the control strain, but this is less pronounced due to the non-accelerated character of their senescence processes.  相似文献   

16.
    
Oxidative stress induces apoptosis in cardiac cells, and antioxidants attenuate the injury. MicroRNAs (miRNAs) are also involved in cell death; therefore, this study aimed to investigate the role of miRNAs in the effect of selenium on oxidative stress‐induced apoptosis. The effects of sodium selenite were analyzed via cell viability, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration. Flow cytometry was used to evaluate cell apoptosis. Fura‐2AM was used to calculate intracellular Ca2+ concentration. Sodium selenite could ameliorate hydrogen peroxide (H2O2)‐induced cell apoptosis and improve expression levels of glutathione peroxidase and thioredoxin reductase. Pretreatment with sodium selenite improved SOD activity and reduced MDA concentration. Treatments with H2O2 or sodium selenite decreased miR‐328 levels. MiR‐328 overexpression enhanced cell apoptosis, reduced ATP2A2 levels, and increased intracellular Ca2+ concentration, while inhibition produced opposite effects. MiR‐328 might be involved in the effect of sodium selenite on H2O2‐induced cell death in H9c2 cells.  相似文献   

17.
18.
Pre-lamin A and progerin have been implicated in normal aging, and the pathogenesis of age-related degenerative diseases is termed 'laminopathies'. Here, we show that mature lamin A has an essential role in cellular fitness and that oxidative damage to lamin A is involved in cellular senescence. Primary human dermal fibroblasts (HDFs) aged replicatively or by pro-oxidants acquire a range of dysmorphic nuclear shapes. We observed that conserved cysteine residues in the lamin A tail domain become hyperoxidized in senescent fibroblasts, which inhibits the formation of lamin A inter- and intramolecular disulfide bonds. Both in the absence of lamin A and in the presence of a lamin A cysteine-to-alanine mutant, which eliminates these cysteine residues (522, 588, and 591), mild oxidative stress induced nuclear disorganization and led to premature senescence as a result of decreased tolerance to ROS stimulators. Human dermal fibroblasts lacking lamin A or expressing the lamin A cysteine-to-alanine mutant displayed a gene expression profile of ROS-responsive genes characteristic of chronic ROS stimulation. Our findings suggest that the conserved C-terminal cysteine residues are essential for lamin A function and that loss or oxidative damage to these cysteine residues promotes cellular senescence.  相似文献   

19.
    
Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号