首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 7-methylguanine (m7G) specific tRNA methyltransferase from E. coli MRE 600 was purified about 1000 fold by affinity chromatography on Sepharose bound with normal E. coli tRNA. The purified enzyme catalyzes exclusively the formation of m7G in submethylated bulk tRNA of E. coli K12 met- rel-. The purified enzyme transfers the methyl group from S-adenosyl-methionine to initiator tRNA of B. subtilis and 0.8 moles m7G residues are formed per mole tRNA. It is suggested that the enzyme specifically recognizes the extra arm unpaired guanylate residue.  相似文献   

2.
Under-modified E. coli tRNATyr that contains 7-(aminomethyl)-7-deazaguanosine in place of Q nucleoside can be chemically modified by dansyl chloride under neutral conditions. Fluorescent labelling specifically occurred only in the 7-(aminomethyl)-7-deazaguanine moiety. The modified tRNATyr was found to be active both in aminoacylation and in binding to ribosomes.  相似文献   

3.
4.
The modified nucleoside, 7-(4,5-cis-dihydroxy-1-cyclopenten-3-yl-aminomethyl)-7-deazaguanosine, designated as Q, and its derivative, Q*, were found in tRNA's from various organisms, including several mammalian tissues, other animals such as starfish, lingula and hagfish, and wheat germ. Q isolated from rat liver tRNA was found to be identical with E. coli Q by mass spectrometry and thin-layer chromatography. Thus the rare modified nucleoside Q originally isolated from E. coli tRNA, is widely distributed in various organisms. Analysis of the mass spectrum of Q* suggested that it has a different side chain from Q.  相似文献   

5.
Purified bulk tRNA from Methanococcus vanielii (carbon source, formate) showed variation in the modified nucleoside pattern reported for Escherichia coli as analyzed by both ion-exchange and thin-layer chromatography. Ribothymidine and 7-methylguanosine were absent; 1-methyladenosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, thiolated nucleosides, pseudouridine, dihydrouridine, and O2'-methylcytidine were quantitated. In vitro methylation by M. Vannielii extracts with S-adenosylmethionine and undermethylated E. coli tRNA revealed active tRNA methyltransferases for formation of methylated residues found in native M. vannielii tRNA, but none for the formation of 7-methylguanosine or ribothymidine. The native M. vannielii tRNA became methylated in the 7-methylguanosine position by E. Coli extracts, but ribothymidine was not formed. Both M. vannielii and E. coli tRNA methyltransferases produced unidentified methylated residues in tRNA's lacking or deficient in ribothymidine.  相似文献   

6.
One of the E. coli mutants selected for deficiency of modified nucleoside Q was found to contain an analogue of Q and normal guanosine in place of Q. The analogue of Q, designated as preQo, was isolated on a large scale from purified tRNATyr containing preQo. The structure of preQo was determined to be 7-(cyano)-7-deazaguanosine by comparison of its ultraviolet absorption spectra, thin-layer chromatographic mobility and mass spectrum with those of synthetic material.  相似文献   

7.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

8.
Escherichia coli grown in chemically produced iron-deficient media have well characterized alterations in the chromatographic properties of tRNAs containing the modified nucleoside 2-methylthio-N6-(delta2-isopentenyl) adenosine. The present report shows that similar tRNA alterations occur in enteropathogenic E. coli inhibited by human milk and bovine colostrum, the inhibited bacteria containing 10% or less of the normal tRNA species. Adding sufficient iron to saturate the iron-binding capacity of the lactoferrin present in milk and colostrum reversed these changes which are probably due to a failure to methylthiolate the isopentenyladenosine. Although adding iron led to a rapid replacement of abnormal tRNA by the chromatographically normal species, and to a resumption of multiplication, the tRNA alterations are not directly related to the inhibition of growth. Strains of E. coli which grew normally in milk, colostrum and in defined media containing the iron-binding protein transferrin or ovotransferrin also contained about 90% of the abnormal species. Rapid conversion of abnormal tRNA to normal tRNA occurred on adding iron and in the absence of RNA synthesis. The tRNA changes are discussed in relation to their possible connection with both the adaptation of E. coli to growth under the iron-restricted conditions imposed by iron-binding proteins in tissue fluids and with bacterial pathogenicity.  相似文献   

9.
Transfer RNA (m7G46) methyltransferase catalyzes the methyl transfer from S-adenosylmethionine to N7 atom of the guanine 46 residue in tRNA. Analysis of the Aquifex aeolicus genome revealed one candidate open reading frame, aq065, encoding this gene. The aq065 protein was expressed in Escherichia coli and purified to homogeneity on 15% SDS-polyacrylamide gel electrophoresis. Although the overall amino acid sequence of the aq065 protein differs considerably from that of E. coli YggH, the purified aq065 protein possessed a tRNA (m7G46) methyltransferase activity. The modified nucleoside and its location were determined by liquid chromatography-mass spectroscopy. To clarify the RNA recognition mechanism of the enzyme, we investigated the methyl transfer activity to 28 variants of yeast tRNAPhe and E. coli tRNAThr. It was confirmed that 5'-leader and 3'-trailer RNAs of tRNA precursor are not required for the methyl transfer. We found that the enzyme specificity was critically dependent on the size of the variable loop. Experiments using truncated variants showed that the variable loop sequence inserted between two stems is recognized as a substrate, and the most important recognition site is contained within the T stem. These results indicate that the L-shaped tRNA structure is not required for methyl acceptance activity. It was also found that nucleotide substitutions around G46 in three-dimensional core decrease the activity.  相似文献   

10.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

11.
At concentrations of 1-1.6 mug/ml, 5,8-dioxo-6-amino-7-chloroquinoline causes auxotrophy for leucine in Escherichia coli MRE 600. With increasing concentrations of this quinone additional amino acids are required for growth. The amount of leucine in the pool of free amino acids is not decreased after treatment of E. coli with the quinone. Transfer RNALeu, however, is charged with leucine less than 10% in quinone-treated cells of E. coli, whereas in control cells the degree of aminoacylation is about 85%. From these data we conclude that the quinone causes auxotrophy for leucine by interacting with the charging process of tRNALeu. Quinone was found to inhibit leucyl-tRNA synthetase activity in purified extracts of E. coli with E. coli tRNA as substrate.  相似文献   

12.
13.
14.
The RNA extracted from MS2 phage particles can accept radioactive leucine and serine in the presence of tRNA activating enzymes. Leucine acceptance is due to the presence of E. coli leucine tRNA that binds very tightly to the virus particle. RPC-5 column chromatography shows that the pattern of virus associated leucyl-tRNA isoacceptors is different from that of normal E. coli leucyl-tRNA. It is also different from the pattern of host leucyl-tRNA isoacceptors found in E. coli lysate following MS2 phage infection. The RPC-5 pattern of the latter tRNA shows several new peaks of leucine tRNA isoacceptors. The possibility that these tRNAs are some modified forms of normal leucine tRNA isoacceptors is suggested.  相似文献   

15.
Novel E. coli mutants deficient in biosynthesis of 5- methylaminomethyl -2-thiouridine were isolated based on a phenotype of reduced readthrough at UAG codons. They define 2 new loci trmE and trmF , near 83' on the E. coli map. These mutants are different from strains carrying trmC mutations, which are known to confer a methylation deficiency in biosynthesis of 5- methylaminomethyl -2-thiouridine. tRNA from mutants carrying trmE or trmF mutations was shown to carry 2-thiouridine instead of 5- methylaminomethyl -2-thiouridine. This deficiency affects the triplet binding properties of the mutant tRNA. Our results suggest that the 5- methylaminomethyl group stabilizes the basepairing of this modified nucleotide with G, most likely through direct interaction with the ribosomal binding site(s).  相似文献   

16.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

17.
18.
Cytosine residues in 32P-labeled E. coli tRNA Leu 1 were modified by treatment of the tRNA with the semicarbazide-bisulfite reagents [Hayatsu, H. (1976) Biochemistry 15, 2677-2682]. Analysis of the modification sites showed that only four cytidine residues, i.e. C35, C53, C85 and C86, reacted. They were identical with the cytidines of this tRNA accessible to methoxyamine [Chang, S. E. and Ish-Horowicz, D. (1974) J. Mol. Biol. 84, 375-388] and the accessibility was consistent with the conformational features recognized for tRNA in general. The rapidity and the simple nature of this modification demonstrate that the semicarbazide-bisulfite reaction is a useful tool in studying conformations of polynucleotides.  相似文献   

19.
20.
We found two genes for tRNA(Arg) in the region upstream of genes for Shiga-like toxin type II (SLT-II) in Escherichia coli O157:H7. The two encoded forms of tRNA(Arg) recognize rare codons in E. coli K12 but these rare codons occur in the toxin genes at high frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号