首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
在室外试验的基础上,研究了地表UV-B辐射增强条件下小麦秸秆成分的变化,及在室内不同培养条件下施用UV-B辐射处理后小麦秸秆对土壤N2O排放的影响.室外试验结果表明:地表UV-B辐射增强减少了小麦地上部分生物量,显著增加了小麦秸秆木质素和全氮含量,增幅分别达94.2%和12.3%,降低了其C/N.室内培养试验结果表明:与常规小麦秸秆相比,UV-B辐射处理后的小麦秸秆显著提高了旱地和淹水条件下N2O的排放量;施用秸秆同时伴施硝态氮条件下,经过UV-B辐射处理的小麦秸秆显著促进了旱地条件下N2O的排放,其排放量为常规秸秆处理的3.2倍,但在淹水条件下对N2O排放无显著影响;无论何种培养条件下,经过UV-B辐射处理的小麦秸秆对土壤呼吸都未产生显著影响.  相似文献   

2.
蒋静艳  胡正华  牛传坡 《生态学杂志》2010,21(10):2715-2720
在室外试验的基础上,研究了地表UV-B辐射增强条件下小麦秸秆成分的变化,及在室内不同培养条件下施用UV-B辐射处理后小麦秸秆对土壤N2O排放的影响.室外试验结果表明:地表UV-B辐射增强减少了小麦地上部分生物量,显著增加了小麦秸秆木质素和全氮含量,增幅分别达94.2%和12.3%,降低了其C/N.室内培养试验结果表明:与常规小麦秸秆相比,UV-B辐射处理后的小麦秸秆显著提高了旱地和淹水条件下N2O的排放量;施用秸秆同时伴施硝态氮条件下,经过UV-B辐射处理的小麦秸秆显著促进了旱地条件下N2O的排放,其排放量为常规秸秆处理的3.2倍,但在淹水条件下对N2O排放无显著影响;无论何种培养条件下,经过UV-B辐射处理的小麦秸秆对土壤呼吸都未产生显著影响.  相似文献   

3.
田向军  林玥  邱宗波  刘晓  岳明 《生态学报》2007,27(12):5202-5208
通过温室盆栽试验,研究了小麦与谷子种群在增强UV—B辐射条件下个体大小等级性与异速生长的变化模式。结果如下:①UV—B辐射处理组与对照组相比株高和生物量极显著下降(P〈0.01),并且其株高和生物量的频率分布均向左偏移。②增强的UV—B辐射使小麦、谷子株高和各部位生物量的Gini系数极显著增大(P〈0.001)。③在增强UV-B辐射下,小麦和谷子株高.生物量之间仍表现为“简单异速生长关系”(P〈0.05),但株高一生物量之间这种关系发生较大的偏离。结果表明增强UV—B辐射对不同大小的植物个体影响是不均匀的。  相似文献   

4.
采用增补和滤除掉部分自然UV-B辐射的模拟试验,研究了增强和近环境UV-B辐射对高寒草甸一年生牧草窄叶野豌豆生长和繁殖的影响.结果表明:增补UV-B辐射处理后,窄叶野豌豆的株高、生物量、分配向果实的生物量、总花数和种子百粒重均显著下降,花期延迟,开花集中度和繁殖成功率有所提高,而种子产量无显著变化.相对于减弱UV-B辐射处理,近环境UV-B辐射使窄叶野豌豆的株高先降后升,分配向果实的生物量减少,花期、花数和种子产量无显著变化,种子百粒重减小.增强和近环境UV-B辐射对窄叶野豌豆的生长和繁殖有一定的抑制作用,且增强UV-B辐射的影响更大.  相似文献   

5.
以药用植物细叶远志Polygala tenuifolia Willd.为实验材料,研究了在大田种植实验条件下,长期调节中波紫外辐射(UV-B,280~320 nm)对细叶远志植株生长发育、植株形态、生物量分配的影响。结果表明,增加UV-B辐射远志叶面积下降37.4%,植株生长缓慢,叶片形态和生物量分配改变,而滤除紫外辐射,远志主根比显著下降,不利于药用部位的形成。该研究为远志栽培提供参考。  相似文献   

6.
不同小麦品种对UV-B辐射增强响应的生理特性差异   总被引:7,自引:0,他引:7  
研究了大田条件下模拟增强UV-B辐射(500 KJ·m-2,相当于昆明地区臭氧层减少20%)对10个小麦品种生理指标的影响以及小麦对UV B辐射响应的种内差异.结果表明,10个供试小麦品种中有6个品种的叶绿素含量显著下降,叶绿素a降低的程度大于叶绿素b,从而导致叶绿素a/b的比率下降.UV-B对小麦叶片内MDA和类黄酮的影响也具有种内差异,有5个品种的MDA含量显著上升, 2个品种的MDA含量显著下降;4个品种的类黄酮含量显著增加,2个品种的类黄酮含量显著减少.叶绿素和类黄酮含量变化与MDA含量均呈显著负相关关系,类黄酮与小麦UV-B抗性之间存在密切联系.  相似文献   

7.
增强UV-B辐射和干旱对春小麦光合作用及其生长的影响   总被引:5,自引:0,他引:5  
在室外盆栽条件下研究了UV-B辐射和土壤干旱对春小麦 '和尚头'生长和光合作用的影响.结果显示:(1)干旱、UV-B辐射、干旱+UV-B(复合)处理均可使叶片类黄酮含量增加,且干旱+UV-B处理增加显著高于其他处理(P<0.05).UV-B辐射和干旱单独处理均能显著降低叶片光合色素含量,但UV-B辐射的副作用大于干旱,复合处理对光合色素的影响介于UV-B和干旱之间.(2)各处理间的光合速率日均值大小次序为:对照>UV-B+干旱>UV-B>干旱;增强UV-B对净光合速率的抑制作用大于干旱,而UV-B+干旱处理的抑制作用较二者单独处理有所减轻.(3)UV-B辐射和干旱单独处理后总生物量比对照减少15%,且抑制作用为:干旱>UV-B>复合处理; UV-B辐射和干旱胁迫不但影响春小麦的生物量,而且影响小穗特征和产量.研究表明,UV-B辐射和干旱之间存在交互作用,说明一种胁迫可以减缓(轻)另外一种胁迫对春小麦的抑制作用.  相似文献   

8.
增强UV-B辐射对喜树幼苗生物量和两种生物碱含量的影响   总被引:1,自引:0,他引:1  
通过盆栽试验,以自然辐射为对照,研究人工增强UV-B辐射下(5.0 μW/cm2)喜树幼苗生物量和各器官中喜树碱、10-羟基喜树碱含量的变化,试验结果表明:(1 )UV-B辐射处理前20d,处理组幼苗的全株以及各器官的鲜重与对照相差很少.至辐射处理的40d,处理组幼苗的全株以及各器官的生物量均高于正常条件的幼苗.试验后期,处理组单株生物量降低,长时间的UV-B辐射使喜树植株矮化、基茎加粗,同时还改变了喜树生长过程中干物质的分配,较多的干物质分配到喜树的茎和根中,而较少进入叶中;(2)UV-B辐射增强能明显增加喜树地上器官中喜树碱的含量,而对10-羟基喜树碱含量影响不明显.(3)各器官中生物碱含量与生物量的积累速率具有一定的相关性,生物量增长过快时单位质量植物体中的生物碱含量下降.  相似文献   

9.
CO2倍增及UV-B增强对大豆植株生长和根际微生物的影响   总被引:5,自引:0,他引:5  
以大豆'齐黄27'为研究材料,采用人工气候室模拟大气CO2浓度倍增(350~700 μmol*mol-1)及紫外线B(UV-B,280~320 nm)辐射增强(4~15 μW*cm-2)的环境条件,研究了CO2浓度增加及UV-B辐射增强对大豆生育前期的生长及根瘤、根际微生物数量的影响.结果表明:(1)增强UV-B能显著减少大豆植株地上部生物量,而对株高的抑制作用不显著;CO2浓度倍增促使大豆株高和地上生物量显著增加,对根系生物量的促进作用不显著,但能够减轻UV-B辐射增强对地上及根系生物量的抑制作用;CO2浓度增加、UV-B辐射增强及其复合胁迫均导致大豆植株根冠比下降,且复合胁迫对根冠比的抑制作用更明显.(2)CO2浓度倍增降低了大豆叶片叶绿素、类胡萝卜素及花青素含量,提高了净光合速率;UV-B辐射增强导致叶绿素含量减少,光合速率下降,却增加了类胡萝卜素及花青素含量;CO2浓度增加、UV-B辐射增强复合处理对叶片色素含量及光合速率的影响具有复合效应.(3)CO2浓度倍增能够促进根瘤数量及根际真菌数量的增加,而UV-B增强处理则显著降低细菌和放线菌的数量;CO2浓度倍增能够缓解UV-B增强处理对放线菌的抑制作用,却导致根际细菌数量进一步减少.研究发现,CO2浓度增加及UV-B辐射增强对大豆生育前期植株生长、叶片色素含量及根际微生物数量存在抑制或促进效应,而且在某些性状上存在复合效应,它们可能主要是通过调节大豆植株的干物质分配及根系的代谢间接影响根瘤数量及根际微生物数量.  相似文献   

10.
增强UV-B辐射及氮水平对长春花生长和生理代谢的影响   总被引:2,自引:0,他引:2  
地表UV-B 辐射增强和氮沉降增加目前已成为影响植物生长的重要生态因子。本文以药用植物长春花(Catharanthus roseus)为材料,研究UV-B辐射和氮供应增加对长春花生长、生理及长春碱含量的协同效应。研究结果表明,紫外辐射增加对长春花生长和生物量积累具有显著的抑制作用。同时外源增加氮供应能明显缓解紫外辐射引起的生长抑制效应。紫外辐射引起的叶片膜脂过氧化胁迫导致了长春花叶片丙二醛含量显著增加,但同时增加氮供应能显著降低丙二醛水平。增强UV-B辐射处理显著促进长春花叶片UV-B吸收化合物合成积累,并随氮供应增加其含量进一步增加;氮供应增加和UV-B辐射增强共同作用时,长春花叶片中长春碱的含量较其单独作用时均显著增加。上述结果表明,增加氮供应不但可以缓解紫外辐射引起的生长抑制和生理伤害,同时对长春花叶片中生物碱的合成积累具有协同促进效应,其原因可能是增强UV-B辐射能促使长春花利用更多的氮源合成积累长春碱。  相似文献   

11.
The influence of enhanced UV-B radiation (approximating a 15% ozone layer reduction) on competitive interaction between spring wheat (Triticum aestivum) and wild oat (Avena fatua) was examined in the field. The density-dependent mortality of both wheat and wild oat did not exhibit a significant difference between control and UV-B treatment conditions. A relatively high degree of competitive stress enhanced the effects of UV-B stress on biomass reduction. The relative competitive status of wheat in terms of total biomass increased under UV-B enhancement while it decreased when based upon grain production. Shifts in competitive balance occurred with significant changes in total biomass, especially when plants grew at higher densities in monocultures and mixtures. The sensitivity of wild oat to intensification of UV-B radiation at higher densities in mixtures was greater than that at lower densities. At all densities examined, wheat grown in mixture was significantly less sensitive to UV-B radiation than that in monoculture, and just the opposite for wild oat. The density of monocultures did not alter the response index (RI) of wheat and wild oat to enhanced UV-B radiation.  相似文献   

12.
Mixtures and monocultures of wheat (Triticum aestivum) and wild oat (Avena fatua), a common weedy competitor of wheat, were exposed to enhanced solar UV-B radiation simulating a 20% reduction in stratospheric ozone to assess the timing and seasonal development of the UV-B effects on light competition in these species. Results from two years of field study revealed that UV-B enhancement had no detectable effect on the magnitude or timing of seedling emergence in either species. End-of-season measurements showed significant UV-B inhibition of leaf insertion height in wild oat in mixture and monoculture in the second year (irrigated year) but not in the first year (drought year). Leaf insertion height of wheat was not affected by UV-B in either year. The UV-B treatment had no detectable effect on monoculture or total (combined species) mixture LAI but did significantly increase (5–7%) the fractional contribution of wheat to the mixture LAI after four weeks of growth in both years. In addition, the UV-B treatment had subtle effects on LAI height profiles with early season mixtures showing significant reductions in wild oat LAI in lower canopy layers in both years while midseason Year 2 mixtures showed significant reductions in wild oat LAI in upper canopy layers. The changes in canopy structure were found to significantly increase (6–7%) the proportional simulated clear sky canopy photosynthesis and light interception of wheat in mixture. These findings, and others, indicate that the effects of UV-B enhancement on competition are realized very early in canopy development and provide additional support for the hypothesis that UV-B enhancement may shift the balance of competition between these species indirectly by altering competitive interactions for light.  相似文献   

13.
Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion), when compared to control pairs grown without UV-B. Also, the total shoot biomass of these species pairs was depressed under ambient UV-B. Relatively large increases in UV-B radiation (approximating a 40% ozone layer reduction when weighted with the generalized plant action spectrum) altered the competitive interactions of some species pairs grown in pots under field conditions, but did not affect the total shoot biomass production of those pairs. Recent field experiments have examined the competitive interactions of wheat ( Triticum aestivum L. cv. Bannock) and wild oat ( Avena fatua L.) under a simulated increased UV-B regime resulting from a 16% ozone layer reduction when weighted with the generalized plant action spectrum. This increase in UV-B altered the competitive interactions of these two species without affecting the total shoot biomass production of the species pair. The manner in which increased UV-B affected the relative competitive abilities of the two species was highly dependent upon the environmental conditions during the early life stages of the plants. The implications of these results for both agricultural and natural plant communities are discussed.  相似文献   

14.
Summary Competition for light among species in a mixed canopy can be assessed quantitatively by a simulation model which evaluates the importance of different morphological and photosynthetic characteristics of each species. A model was developed that simulates how the foliage of all species attenuate radiation in the canopy and how much radiation is received by foliage of each species. The model can account for different kinds of foliage (leaf blades, stems, etc.) for each species. The photosynthesis and transpiration for sunlit and shaded foliage of each species is also computed for different layers in the canopy. The model is an extension of previously described single-species canopy photosynthesis simulation models. Model predictions of the fraction of foliage sunlit and interception of light by sunlit and shaded foliage for monoculture and mixed canopies of wheat (Triticum aestivum) and wild oat (Avena fatua) in the field compared very well with measured values. The model was used to calculate light interception and canopy photosynthesis for both species of wheat/wild oat mixtures grown under normal solar and enhanced ultraviolet-B (290–320 nm) radiation (UV-B) in a glasshouse experiment with no root competition. In these experiments, measurements showed that the mixtures receiving enhanced UV-B radiation had a greater proportion of the total foliage area composed of wheat compared to mixtures in the control treatments. The difference in species foliage area and its position in the canopy resulted in a calculated increase in the portion of total canopy radiation interception and photosynthesis by wheat. This, in turn, is consistent with greater canopy biomass of wheat reported in canopies irradiated with supplemental UV-B.  相似文献   

15.
Summary Changes in plant growth and competitive balance between pairs of competing species were documented as a result of supplementary ultraviolet-B radiation (principally in the 290–315 nm waveband) under field conditions. This component of the terrestrial solar spectrum would be intensified if the atmospheric ozone layer were reduced. A method for calculating and statistically analyzing relative crowding coefficients was developed and used to evaluate the competitive status of the species pairs sown in a modified replacement series. The effect of the supplementary UV-B irradiance was generally detrimental to plant growth, and was reflected in decreased leaf area, biomass, height and density as well as changes in competitive balance for various species. For some species, interspecific competition apparently accentuated the effect of the UV-B radiation, while more intense intraspecific competition may have had the same effect for other species. A few species when grown in a situation of more severe mutual interspecific competition exhibited enhanced growth under the UV-B radiation treatment. This, however, was usually associated with a detrimental effect of the radiation on its competitor and thus was likely the result of its improved competitive circumstance rather than a beneficial physiological effect of the radiation.  相似文献   

16.
The influence of ultraviolet-B (UV-B) radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.  相似文献   

17.
增强的UV-B辐射对麦田生态系统中种群数量动态的影响   总被引:3,自引:0,他引:3  
李元  王勋陵 《生态学报》2001,21(1):131-135
研究了大田栽培和自然光条件下,模拟UV-B辐射(UV-B,280~315nm)增强对麦田生态系统杂草、大型土壤动物和麦蚜种群数量动态的影响。在UV-B辐射下,杂草和大型土壤动物的种类和数量降低,物种多样性改变,杂草总生物量也降低。UV-B辐射降低麦蚜复合种群数量,并与麦叶粗纤维、可溶性蛋白、可溶性糖、Mg和Zn含量有显著的相关性。UV-B辐射还导致麦蚜与麦叶Mg、Fe和Zn含量均显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号