首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The nature of ecological stability is still debated, and there is a need to establish which types of communities show resistance to environmental change and to explore community responses in relation to their environmental context. This study aims to investigate the effects of reinstating cutting management on abandoned wet grasslands by comparing responses in two different communities with contrasting environmental conditions, to elucidate the restoration potential of wet grasslands. Two coastal wet grassland plant communities in Estonia were monitored over 5?years: a species-poor lower shore grassland and a more diverse tall grassland. Piezometers and soil samples were used to characterise the hydrology, while cutting effects and ongoing abandonment were compared using replicate quadrats in both grasslands. Annual changes and significant differences in community composition were analysed using Detrended and Canonical Correspondence Analyses, diversity indices, and inferential statistics. The results showed that cutting produced greater changes in composition and species abundance in the lower shore community compared to the tall grassland, including a greater proportion of significant differences. The increased responsiveness of the lower shore community may be related to its variable hydrological regime, especially flooding, which creates a dynamic environment favouring adaptable species. In contrast, the tall grassland featured a more stable water regime and species that responded less to perturbation, and manifested resistance to cutting management. Thus, restoring abandoned wet grasslands through vegetation management may be a slow process, especially where there is residual diversity, and the importance of hydrological regime in determining wet grassland communities should be considered.  相似文献   

2.
Response of floodplain grassland plant communities to altered water regimes   总被引:2,自引:1,他引:1  
Floodplain grasslands are often composed of a mosaic of plant communities controlled by hydrological regime. This article examines the sensitivity of floodplain grassland plant communities to water regime using reciprocal transplantation of an inundation grassland and a flood-meadow within an English floodplain. Experimental treatments comprised control, transplanted and lifted plots; the last treatment, in order to elucidate any disturbance effects of transplantation. Plant community response was analysed using species abundance and their ecological traits. Results from both communities showed substantial annual variations related to hydrology, including significant species changes, but generally, vegetation seemed to be responding to drier conditions following a major flood event. This ‘drying’ trend was characterised by increased species diversity, a greater abundance of competitive species and fewer typical wetland plants. Transplanted community composition increasingly resembled receptor sites and transplant effects were most pronounced the first year after treatment for both vegetation types. Differential responses to water regime were detected for the two plant communities. The inundation grassland community was particularly dynamic with a composition that rapidly reflected drying conditions following the major flood, but transplantation into a drier flood-meadow site prompted little additional change. The flood-meadow community appeared more resistant to post-inundation drying, but was sensitive to increased wetness caused by transplantation into inundation grassland, which significantly reduced six species while none were significantly favoured. The effects of disturbance caused by lifting the transplants were limited in both communities, although five species showed significant annual fluctuations. The study shows that small alterations in water regime can prompt rapid vegetation changes and significant plant species responses in floodplain grasslands, with effects probably magnified through competitive interactions. The dynamic properties of floodplain vegetation demonstrated by this study suggest that its classification, management and monitoring are challenging and ideally should be based on long-term studies.  相似文献   

3.
Question: What are the effects of grazing abandonment on the vegetation composition of Estonian coastal wetlands? Location: Vormsi Island and Silma Nature Reserve in western Estonia, Europe. Methods: Local knowledge and field reconnaissance were used to identify current and historical management levels of wetland sites within the west Estonian study area. Nine study sites, with varying management histories, were selected comprising an area of 287 ha. A total of 198 quadrats were taken from 43 distinct vegetation patches in five of the sites. TWINSPAN analysis was used to identify community type, and a phytosociological key was constructed for character taxa. This vegetation classification was then applied within a GIS‐based context to classify all the study sites, using a ground survey technique and 1:2000 scale air photos. Results: We identified 11 different brackish coastal wetland community types. Indicator species were defined with community characteristics for the seven main vegetation types readily recognisable in the field. Coastal wet grasslands were most extensive in grazed sites, or sites that had been more intensively grazed, while abandoned sites were largely composed of Phragmites australis stands, tall grassland, and scrub. Site variations based on vegetation composition were significantly correlated with past grazing intensity. Plant community types showed significant edaphic differences, with particularly low soil moisture and high conductivity and pH for open pioneer patches compared to other vegetation types. Conclusion: Abandonment of traditionally grazed coastal grasslands threatens their characteristic biodiversity. This study found that grazing abandonment reduced the extent of coastal wetland grasslands of particular conservation value. Nevertheless, plant species of conservation interest were found across the sequence of community types described. The study shows that grazing is an important factor influencing coastal wetland plant communities but suggests that vegetation distribution is affected by environmental variables, such as topography.  相似文献   

4.
Abstract. Semi‐natural grasslands are a threatened biotope type in many countries. Typical grassland plant species are adapted to continuous grazing or mowing that keeps the environment open. With the decline in grassland area, these species are ever more reliant on alternative habitats such as road verges. To find out whether plant communities comparable to those of semi‐natural grasslands can be maintained on modern road and railway sides, the vegetation of 92 grasslands and 90 road and railway verges was studied. These biotope types were compared with each other according to their community structure, total number of species, number of grassland species and restricted‐range diversity. Further study of the vegetation of road and railway verges was carried out in order to identify the treatments and environments which are most likely to support diverse plant communities. The species number and the restricted‐range diversity proved to be higher next to roads and railways than on grasslands. Grassland species were, however, most abundant on grasslands. Furthermore, the community structure of these biotope types was totally divergent. In their present state, road and railway verges are not a substitute for semi‐natural grasslands. Nevertheless, the occurrence of grassland species in verges may be enhanced by a suitable mowing regime, by giving up the use of de‐icing salt and herbicides and by allowing natural establishment of vegetation on the verges.  相似文献   

5.
Abstract Flooding provokes the death of many dicotyledonous species in grazed grasslands of the Flooding Pampa in Argentina, including the clonal plant Ambrosia tenuifolia, which produce the opening of numerous gaps. The objective of this study was to investigate the recolonization of grassland by A. tenuifolia after this species disappeared due to the occurrence of prolonged flooding events. To this end, responses of seed germination to environmental factors associated with gaps, such as light quality and temperature regime, conditions related to seedling survival, and clonal growth of ramets outside the gaps were studied in two different experiments in the field. Environmental factors related to gaps promoted the recruitment of new genets. The combined effect of alternating temperatures and the high red : far‐red ratio set off germination from the soil seed bank; germination also was enhanced when signals were generated artificially under the intact canopy in the field. Higher resource availabilities and maximum seedling survival were recorded in canopy gaps, which were the focus of invasion. Grassland recolonization outside the gaps continued rapidly by clonal growth, from small gaps and large ones, even within the dense surrounding canopy. This provoked an intense competition with the other species. Gap opening by disturbances, seed germination in gaps and clonal growth were decisive for the recolonization of A. tenuifolia populations. This sequence of events triggered the recolonization of the plant community by this species, in sites where it had been eliminated by prolonged flooding. This process represents one of the most significant fluctuations in the vegetation dynamics of the Flooding Pampa Grasslands.  相似文献   

6.
Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically‐rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum. Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator community. Management of grasslands should aim to maximize the pollinator feeding resource, as well as maintain plant communities. Retaining waterlogged ground may enhance the number of hoverflies with semiaquatic larvae.  相似文献   

7.
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.  相似文献   

8.
Background: The rapid decline of semi-natural grasslands in Japan threatens many relic and endemic plant species. There is insufficient knowledge on how the impacts of land-use changes and management of grasslands have been affecting grassland ecosystems and what conservation measures may be taken to conserve as much of the existing plant diversity as possible.

Aim: We assessed the existing management regimes for their suitability for conserving Red Data Book (RDB) species.

Methods: We conducted our study in four districts of Kushima, Kyushu, south-west Japan, with different land-use histories. We compared species richness, plant density and abundance in six grassland types: regularly burnt, regularly mown, paddy levee, roadside, landslip and wetland communities in a total of 289 1 m x 1 m quadrats, recorded in172 grassland patches. Species richness plant density and abundance were analysed with special reference to RDB species under different land use history.

Results: Species richness of grasslands did not differ across different land use histories, yet our analysis showed that the reduced area of grasslands markedly affected the density of RDB species. Grassland types differed in their ability to support RDB species: regularly burnt grasslands were the richest in RDB species and poorest in alien species, followed by regularly mown grasslands, paddy levees, landslip, wetland and roadside communities.

Conclusions: Traditional management regimes, such as regular burning or mowing of grasslands have the best potential for conserving RDB species, and thus should be part of conservation management practices of semi-natural grasslands.  相似文献   

9.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

10.
The target rate of afforestation in Ireland over the next 30 years is 20,000 ha per year, which would result in an increase of the forest cover from the current 10% to 17%. In order to promote sustainable forest management practices, it is essential to know the composition and conservation value of habitats where afforestation is planned and the effects of subsequent planting upon biodiversity. The objectives of this study were to investigate changes in vegetation composition and diversity of grasslands 5 years after afforestation with Sitka spruce (Picea sitchensis) and determine the primary ecological and management factors responsible for these changes. Species cover, environmental and management data were collected from 16 afforested and unplanted improved and wet grassland site pairs in Ireland. Our results indicate that 5 years after tree planting, there were significant changes in richness, composition, and abundance of species. Competitive and vigorous grasses were more abundant in planted than in unplanted sites, as were generalist species found in both open and wooded habitats, while small-stature shade-sensitive species were less abundant. Vascular plant species richness and Shannon’s diversity index were higher in unplanted wet grassland, than in the planted sites. Bryophyte species richness was higher in planted improved grassland than in unplanted sites. The differences were primarily the result of the exclusion of grazing, ground preparation, changes in nutrient management and drainage for afforestation. Drainage ditches provided a temporary habitat for less competitive species, but the overall effect of drainage was to reduce the diversity of species dependent on wet conditions. Variance partitioning showed differences in the relative influences of environmental and management variables on biodiversity in the two habitats, probably due to the greater pre-afforestation grazing pressure and fertilisation levels in improved grasslands. The differences in biodiversity between planted and unplanted grasslands indicate that afforestation represents a threat to semi-natural habitats where distinctive and highly localised plant communities could potentially occur.  相似文献   

11.
Insufficient productivity has driven population declines in grassland breeding waders with high levels of predation limiting productivity in many wetland reserves. We studied hatching and fledging success of Lapwings Vanellus vanellus in two continental river floodplains (Havel and Oder) differing in water regime and density of Red Foxes Vulpes vulpes to assess the effects of increased water tables as a management option. Nest predation rates were high on dry sites as well as on flooded grasslands in all areas irrespective of fox litter density. Carnivores formed the majority of the predators identified and eggshell remains suggested that mustelids took proportionally more nests at low fox densities. At unsuccessful nests on flooded grassland, an increasing incidence of nocturnal disturbances prior to predation indicated an influx of carnivores as the sites dried out. Brood survival depended on the availability of wet features, and productivity was thus linked to water tables in June in one area (Havel). Productivity was insufficient to maintain local populations in all areas and years except for two occasions related to increased water tables. Retaining high water tables throughout the breeding season therefore remains an important management option for waders on continental wet grasslands.  相似文献   

12.
Question: Can GIS and GPS technology be used to quantify the hydrological regime of different plant communities on turloughs (groundwater dependent calcareous wetlands)? Location: Skealoghan turlough, County Mayo, Ireland. Methods: Plant communities were mapped and digitised with GIS software and a digital elevation model of the site was constructed from differential GPS data. Together with records of water level fluctuations on the site from May 2001 to May 2004, these data were used to calculate hydrological variables for each plant community. Hierarchical cluster analysis was used to identify groups of plant communities with similar hydrological regimes. Results: 15 plant communities were mapped at Skea loghan, with the Cirsio‐Molinietum and Ranunculo‐Potentilletum anserinae being the dominant phytosociological associations. Skealoghan is subject to large temporal and spatial variation in its hydrological regime and fluctuations in water level are intrinsically linked to rainfall. The spatial variation in flooding can be linked to the vegetation zones. Conclusions: GIS and DGPS technology can be used to quantify the hydrological regime of different plant communities on turloughs. Since the hydrological regime is a major environmental factor controlling the vegetation composition of the site, the maintenance of natural flooding regimes is a vital component for the conservation and management of the diverse vegetation mosaic at Skealoghan turlough.  相似文献   

13.
Semi-natural grasslands in Sweden are species-rich, and their natural values are strongly dependent on continuous management, mainly by grazing. However, the large heterogeneity in vegetation within and between grassland sites must be taken into account when designing management and preservation schemes, calling for precise field monitoring and assessment of habitat type and land use history. We have evaluated different surrogate measures to assess community composition and biodiversity of the most common vegetation types in grazed semi-natural pastures. We compared the complete plant community, two reduced checklists intended for quick surveys of the plant community, and the ant community. The results suggest that the taxonomic resolution in a plant inventory is important for both biodiversity assessment and recognition of vegetation types. The extent of a reduced species checklist was of greater importance than its quality for describing the plant community. Reduced checklists should only be used if they comprise species with known affinity to the studied vegetation types. We also found that plants and ants experience grazed semi-natural grasslands in different ways. Ant communities did not resemble the communities deduced from plant inventories, or vegetation types recognised by field staff.  相似文献   

14.
15.
Question: How does responsiveness to water and Nitrogen (N) availability vary across the compositional and functional diversity that exists in a mesic California annual grassland plant community? Location: Northern California annual grassland. Methods: A mesocosm system was used to simulate average annual precipitation totals and dry and wet year extremes observed in northern California mesic grasslands. The effects of precipitation and N availability on biomass and fecundity were measured on three different vegetation types, a mixed grass forb community, and a forb and a grass monoculture. The treatment effects on plant community composition were examined in the mixed species community. Results: While growth and seed production of the three vegetation types was inherently different, their responses to variation in precipitation and N were statistically similar. Plant density, shoot biomass, and seed production tended to increase with greater water availability in all vegetation types, with the exception of a consistent growth reduction in high precipitation (1245 mm) plots in the first year of the study. Shoot biomass responded positively to N addition, an effect that increased with greater water availability. Nitrogen addition had little effect on plant density or seed production. In the mixed grass‐forb community, biomass responsiveness to water and N treatments were consistently driven by the shoot growth of Avena barbata, the dominant grass species. Conclusions: Vegetation responses to changes in precipitation and N availability were consistent across a range of composition and structural diversity in this study. Plant growth and seed production were sensitive to both increased and decreased precipitation totals, and the magnitude of these responses to N availability varied depending on soil moisture conditions. Our results suggest the impacts of changing precipitation regimes and N deposition on annual productivity of California grasslands may be predictable under different climate scenarios across a range of plant communities.  相似文献   

16.
Environmental degradation influences carbon (C) cycling and storage in grassland ecosystems by altering vegetation productivity. However, the impacts of different degradation intensities on vegetation–soil C distributions in grasslands have not been well documented. We measured C storage in soil, roots, and plants under light, moderate, and severe degradation levels in a typical steppe region of Xilinhot, Inner Mongolia, China in 2011 and 2012. Grassland C storage was highest in soil, followed by roots, and then aboveground plant biomass. Grassland degradation and precipitation significantly influenced C storage distributions. During the dry year (2011), total C storage in vegetation and soil was highest under light degradation. Carbon storage in aboveground plant biomass and roots increased with degradation intensity. During the wet year (2012), C storage was highest in aboveground plant biomass and roots under light degradation. Root biomass tended to be concentrated in the soil surface during the wet year.  相似文献   

17.
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.  相似文献   

18.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

19.
群落生物量和物种多样性是表征草地生态系统数量特征的重要指标。该研究以新疆阿尔泰山南麓两河源放牧区草地为研究对象,利用样方法对两河源不同放牧区的草地植被进行调查,分析研究区生物量和物种多样性变化,探讨二者与环境因子之间的关联性,为草地群落物种保护以及草地可持续利用提供理论依据。结果表明:(1) 两河源不同牧区间群落盖度、高度、植株密度、地上生物量和单位盖度生物量存在差异。(2) 两河源牧区草地群落地上生物量与群落盖度、植株密度呈显著正相关关系(P<0.05),且地上生物量主要受草地群落盖度的影响;不同牧区的物种多样性指数有一定差异,但物种分布相对均匀。(3)两河源牧区草地群落生物量及物种多样性主要受气温和降水的影响。  相似文献   

20.

Background

Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community.

Methods

We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario.

Results

All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition.

Conclusions

As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and composition of Lowland Grassland communities is unlikely to be a viable management option in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号