首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

2.
The interaction of apolipoprotein (apo) E-free high-density lipoprotein (HDL) with parenchymal, endothelial and Kupffer cells from liver was characterized. At 10 min after injection of radiolabelled HDL into rats, 1.0 +/- 0.1% of the radioactivity was associated with the liver. Subfractionation of the liver into parenchymal, endothelial and Kupffer cells, by a low-temperature cell-isolation procedure, indicated that 77.8 +/- 2.4% of the total liver-associated radioactivity was recovered with parenchymal cells, 10.8 +/- 0.8% with endothelial cells and 11.3 +/- 1.7% with Kupffer cells. It can be concluded that inside the liver a substantial part of HDL becomes associated with endothelial and Kupffer cells in addition to parenchymal cells. With freshly isolated parenchymal, endothelial and Kupffer cells the binding properties for apo E-free HDL were determined. For parenchymal, endothelial and Kupffer cells, evidence was obtained for a saturable, specific, high-affinity binding site with Kd and Bmax. values respectively in the ranges 10-20 micrograms of HDL/ml and 25-50 ng of HDL/mg of cell protein. In all three cell types nitrosylated HDL and low-density lipoproteins did not compete for the binding of native HDL, indicating that lipids and apo B are not involved in specific apo E-free HDL binding. Very-low-density lipoproteins (VLDL), however, did compete for HDL binding. The competition of VLDL with apo E-free HDL could not be explained by label exchange or by transfer of radioactive lipids or apolipoproteins between HDL and VLDL, and it is therefore suggested that competition is exerted by the presence of apo Cs in VLDL. The results presented here provide evidence for a high-affinity recognition site for HDL on parenchymal, liver endothelial and Kupffer cells, with identical recognition properties on the three cell types. HDL is expected to deliver cholesterol from peripheral cells, including endothelial and Kupffer cells, to the liver hepatocytes, where cholesterol can be converted into bile acids and thereby irreversibly removed from the circulation. The observed identical recognition properties of the HDL high-affinity site on liver parenchymal, endothelial and Kupffer cells suggest that one receptor may mediate both cholesterol efflux and cholesterol influx, and that the regulation of this bidirectional cholesterol (ester) flux lies beyond the initial binding of HDL to the receptor.  相似文献   

3.
Plasma HDL can be classified according to their apolipoprotein content into at least two types of lipoprotein particles: lipoproteins containing both apo A-I and apo A-II (LP A-I/A-II) and lipoproteins with apo A-I but without apo A-II (LP A-I). LP A-I and LP A-I/A-II were isolated by immuno-affinity chromatography. LP A-I has a higher cholesterol content and less protein compared to LP A-I/A-II. The average particle mass of LP A-I is higher (379 kDa) than the average particle weight of LP A-I/A-II (269 kDa). The binding of 125I-LP A-I to HepG2 cells at 4 degrees C, as well as the uptake of [3H]cholesteryl ether-labelled LP A-I by HepG2 cells at 37 degrees C, was significantly higher than the binding and uptake of LP A-I/A-II. It is likely that both binding and uptake are mediated by apo A-I. Our results do not provide evidence in favor of a specific role for apo A-II in the binding and uptake of HDL by HepG2 cells.  相似文献   

4.
The characteristics and physiological relevance of the high density lipoprotein (HDL) binding site on unstimulated and mitogen activated human peripheral blood lymphocytes have been investigated. At 37 degrees C, specific binding/uptake of fluorescent (dioctadecylin-docarbocyanine, DiI) HDL was observed by cells from healthy donors as well as by those from low density lipoprotein receptor-defective patients; mitogen activated T-blasts exhibited a markedly elevated DiI-HDL uptake compared to resting T-cells. Binding was saturable at 37 degrees C and of high affinity, with a Kd of 5 x 10(-8) M. It was blocked by anti-apoAI polyclonal antibodies (F(ab)2 fraction), but not by anti-apolipoprotein (apo)E, anti-apoAII, or anti-apoB, and was inhibited competitively by HDL apoproteins and an apoAI-protein A fusion protein. T-cell associated DiI-HDL was increased by trypsin treatment (of the cells) and decreased by activation in the presence of HDL or low density lipoprotein. Comparison of the concentration dependencies of growth promotion and specific cell association of HDL indicated that two mechanisms of lipid exchange may be in operation: one a binding-dependent mechanism of cholesterol exchange, with maximal effect in the HDL concentration range (20-200 micrograms/ml) in which specific binding increases rapidly, and the other a binding-independent exchange of lipids effective at concentrations in which specific binding is saturated (300-5000 micrograms/ml).  相似文献   

5.
Apo C-III plays an important role in the metabolism of plasma triglyceride, which can delay the catabolism of triglyceride-rich lipoproteins by interfering with apo E-mediated receptor clearance of remnant particles from plasma. The mechanism of the interference has not yet been defined. To further explore the role of apo C-III, we first injected mice with 125I-apo C-III. The measurement of radioactivity showed that liver took up 3.3-10 fold as much radioactivity as other organs such as heart, spleen, lung, kidney, stomach, large intestine, small intestine, and muscle. This was confirmed by incubating the tissue homogenates of the organs with 125I-apo C-III that the radiolabeled apo C-III specifically bound to only hepatic homogenate. To investigate which subcellular part or parts of hepatic cells play the role of binding to apo C-III, hepatic cell components of nucleus, mitochondria, microsomes and plasma membranes were then incubated with 125I-apo C-III. The radiolabeled apo C-III could specifically bind to only hepatic plasma membranes. Finally hepatic plasma membranes were purified to study the characteristics of the specific binding with apo C-III. Addition of increasing concentration of 125I-apo C-III to human hepatic plasma membranes revealed saturable binding to membranes with a Kd of 0.31±0.07 mol/l. The maximum specific binding capacity was 1.74±0.45 apo C-III/mg membrane protein. In competition studies using unlabeled apo C-III and isolated lipoproteins HDL, LDL and VLDL, only apo C-III and VLDL effectively competed with 125I-apo C-III for membrane binding. The binding of 125I-apo C-III to human liver plasma membranes was Ca2+-independent, and was abolished when plasma membranes were treated with trypsin. The characteristics of 125I-apo C-III binding to mouse liver plasma membranes were similar to those of human liver plasma membranes with the exception of a binding maximum of 1.52±0.39 apo C-III/mg membrane protein. We conclude that apo C-III exhibits high-affinity binding to hepatic plasma membranes, which is saturable, reverse and specific.  相似文献   

6.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

7.
Human high-density lipoprotein class-3 (HDL3) was incubated with freshly isolated blood polymorphonuclear leukocytes (PMN) at 37 and 4 degrees C. At both temperatures the release of proteolytic activity (PA) causing the specific hydrolysis of apo-A-II was dependent on the concentration of HDL3 in the medium. At 37 degrees C, the efflux of PA was linear and no saturation was reached up to an HDL3 protein concentration in the medium of 800 micrograms/ml. In turn, at 4 degrees C, maximal PA release was reached at a concentration below 600 micrograms/ml of HDL3 protein/ml in the medium. Canine HDL, which contains apo-A-I, but not apo-A-II, was as effective as human HDL3 in promoting the release of PA from PMN. This property was also exhibited by egg lecithin/cholesterol vesicles containing apo-A-I. At 4 degrees C, there was no strict correlation between efflux of PA affected by HDL3 and specific binding of 125I-apo-A-I (HDL3). In competitive binding experiments, a 50-fold excess of unlabeled HDL3 prevented more than 90% of the binding of 125I-apo-A-I (HDL3) to PMN, whereas an excess of unlabeled low-density lipoprotein exhibited no effect. When human HDL3 was incubated with PMN at 4 or 37 degrees C and then subjected to ultracentrifugation at d 1.21 g/ml, most of the PA that was initially associated with this lipoprotein was recovered in the bottom of the tube. By gel filtration, both PA and HDL3 were in the same peak in a low ionic strength buffer, but were dissociated from each other by a high-salt solution (d 1.21 g/ml). We conclude that both naturally occurring HDLs and apo-A-I-stabilized lipid vesicles favor the release from PMN of an enzymatic activity which cleaves human apo-A-II. This release appears to be dependent both on the interaction of the cells with the lipoprotein ligand and on the lipoprotein surface area acting as the acceptor for the enzyme, probably through electrostatic forces.  相似文献   

8.
Apolipoprotein A-IV (apo A-IV) is present in plasma associated to both HDL and as a complex with lipids that cannot be floated by ultracentrifugation at 1.21 g/ml density. Apo A-IV is likely an important molecular determinant in HDL binding to the liver. In this communication, data are presented supporting the view that a specific liver plasma membrane protein of Mr 95,000 is a constituent of the apo A-IV binding site. The protein was solubilized with CHAPS from purified rat liver plasma membranes and subjected to SDS-PAGE. Transblotted to nitrocellulose sheet could be identified as recognizing 125I-apo A-IV-DMPC by autoradiography. 125I-apo A-I-DMPC and radioiodinated rat apo E-poor HDL, also bound to the protein. Apo B-100 (as human LDL) and apo C-III did not bind. The protein identified is likely to be the same that has been previously identified by Graham and Oram [1987) J. Biol. Chem. 262, 7439-7442) as 'HDL receptor protein'.  相似文献   

9.
[3H]Triacylglycerol-labelled chylomicrons were isolated from intestinal lymph, obtained from rats made hypolipidaemic by treatment with pharmacological amounts of 17 alpha-ethynyloestradiol. Oestrogen treatment results in a large reduction in the content of apolipoproteins (apo) E and C of lymph chylomicrons. Upon incubation in vitro with freshly isolated parenchymal and non-parenchymal cells the apo E-, apo C-poor chylomicrons became readily cell-associated. With increasing chylomicron concentrations this cell-association was saturable and half-maximal cell-association was achieved at about 0.55 mg of triacylglycerol/ml. The cell-association was time- and temperature-dependent. A more than 90% inhibition of the cell-association of the [3H]triacylglycerol moiety was observed with both parenchymal and non-parenchymal cells when pure apo C-III (12.6 micrograms/mg of triacylglycerol) was incorporated into the chylomicrons. These data indicate that apo E-, apo C-poor chylomicrons are bound to both parenchymal and non-parenchymal liver cells at a high-affinity site of limited capacity and that binding to this site is strongly inhibited by apo C-III. With apo C-III-enriched chylomicrons simultaneous determination of the cell-association of the 125I-apo C-III and the [3H]triacylglycerol moiety indicated that more 125I-apo C-III becomes associated to the cells than expected on the basis of [3H]triacylglycerol radioactivity measurements. It is suggested that upon cell-association of apo C-III its binding to the chylomicron particles is lost. Consequently the occupation of the cellular recognition site by apo C-III prevents further chylomicron binding and thus leads to a decrease of the cell-association level of the [3H]triacylglycerol moiety. Apo E enrichment of the chylomicrons led to an increased cell-association rate with parenchymal cells and to a marked increase of the cell-association level with non-parenchymal cells. The cell-association of the apo E radioactivity followed closely the [3H]triacylglycerol radioactivity, indicating that the particle-apo E complex is bound as a unity. The apo E effects were opposed by apo C-III. With apo E-, apo C-III-enriched chylomicrons more 125I-apo E became associated with the cells than could be expected on the basis of the [3H]triacylglycerol measurements. It is concluded that apo C-III can weaken the interaction of apo E with the chylomicrons leading to the cell-association of free apo E. It appears that subtle changes in the apo E and/or apo C-III content of chylomicrons can influence the interaction with both parenchymal and non-parenchymal liver cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The interaction of high-density lipoproteins (HDL) with adipocytes is important in the regulation of cellular cholesterol flux. To study the mechanisms of HDL binding and cellular processing, we incubated adipocytes isolated from epididymal and perirenal adipose tissue of male Wistar rats (300 g) with HDL1 (1.07-1.10 g/mL) and HDL2 (1.10-1.14 g/mL) fractions separated from rat plasma by gradient ultracentrifugation. Freshly isolated adipocytes were incubated with 125I-labeled HDL for 2 h at 37 degrees C to determine cell-associated uptake and degradation. Adipocytes from both fat regions showed significant cell-associated HDL1 and HDL2 uptake and very high medium degradation (2- to 6-fold higher than uptake). To assess 125I-labeled HDL binding independent of cellular metabolism, we purified adipocyte plasma membranes from isolated adipocytes and used them in binding assays. Binding of HDL1 and HDL2 in the membrane system was 85-95% specific, sensitive to high NaCl concentrations, and abolished by pronase treatment. In contrast to HDL2 binding, the maximum HDL1 binding to perirenal plasma membranes was significantly higher than its binding to epididymal membranes (7.2 +/- 1.3 vs. 4.4 +/- 0.2 micrograms/mg, n = 6, p less than 0.05). This increment in HDL1 binding to perirenal membranes represented an EDTA- sensitive, calcium-dependent component. These results indicate that HDL binding to adipocyte plasma membranes depends on both adipose tissue region and HDL subtype. The membrane binding characteristics, taken together with the cellular uptake results, suggest that adipocytes bind and metabolize HDL and that this interaction may involve a protein receptor.  相似文献   

11.
Apolipoprotein (apo) E-deficient rat high-density lipoproteins (HDL) bind to isolated rat hepatocytes at 4 degrees C by a process shown to be saturable and competed for by an excess of unlabeled HDL. Uptake (binding and internalization) at 37 degrees C was also saturable and competed for by an excess of unlabeled HDL. At 37 degrees C the HDL apoprotein was degraded as evidenced by the appearance of trichloroacetic acid-soluble radioactivity in the incubation media. The binding of a constant amount of 125I-apo-E-deficient HDL was measured in the presence of increasing concentrations of various lipoproteins. HDL and dimyristoyl phosphatidylcholine (DMPC) X apo-A-I complexes decreased binding by 80 and 65%, respectively. Human low-density lipoproteins, DMPC X apo-E complexes, and DMPC vesicles alone did not compete for apo-E-deficient HDL binding. However, DMPC X apo-E complexes did compete for the binding of the total HDL fraction that contained apo-E but to a lesser extent than did DMPC X apo-A-I. DMPC X 125I-apo-A-I complexes also bound to hepatocytes, and this binding was competed for by excess HDL (70%) and DMPC X apo-A-I complexes (65%), but there was no competition for binding by DMPC vesicles or DMPC X apo-E complexes. It thus appears that hepatocytes have a specific receptor for HDL and that apo-A-I is the ligand for this receptor.  相似文献   

12.
[125I]-labelled apolipoprotein E-free high density lipoprotein (apo E-free HDL) binds to cultured human endothelial cells with high affinity. Competitive binding experiments showed that complexes of egg phosphatidyl choline with respectively apo A-1, A-2 and E, and phosphatidyl choline vesicles alone, competed efficiently with [125I]-apo E-free HDL for binding, suggesting that the binding of HDL to the high affinity receptor is not mediated by recognition of one specific apolipoprotein. Analyses of the respective incubation media of the competitive binding experiments by density gradient ultracentrifugation showed that the [125I]-label of [125I]-HDL redistributes to the competitors used. This implies that the usual competitive binding experiments may not be used in order to investigate which HDL component is involved in the high affinity binding of HDL to the plasma membrane.  相似文献   

13.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

14.
Binding of human lipoproteins to cultured mouse Ob17 preadipose and adipose cells was studied, using labeled VLDL, LDL and apoprotein E-free HDL. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 6.4, 31 and 24 micrograms/ml for VLDL, LDL and apoprotein E-free HDL, whereas the maximal numbers of binding sites per cell were 4.2 X 10(4), 1.5 X 10(4) and 2.5 X 10(5). The binding of 125I-LDL was competitively inhibited by LDL greater than VLDL greater than total HDL; human LDL and mouse LDL were equipotent in competition assays. Methylated LDL and apoprotein E-free HDL were not competitors. In contrast, the binding of 125I-apoprotein E-free HDL was competitively inhibited by apoprotein E-free HDL greater than total HDL and the binding of 125I-HDL3 by mouse HDL. Thus, mouse adipose cells possess distinct apoprotein B, E and apoprotein E-free HDL binding sites which can recognize heterologous or homologous lipoproteins. The cell surface receptor of LDL in mouse preadipose cells shows similarities with that described for human fibroblasts, since: (1) the LDL binding initiated the process of internalization and degradation of the apoprotein B and apoprotein E-containing lipoproteins; (2) receptor-mediated uptake of cholesterol LDL led to a parallel but incomplete decrease in the [14C]acetate incorporation into cholesterol and in the activity of HMG-CoA reductase. Growing (undifferentiated) or growth-arrested cells (differentiated or not) showed no significant changes in the Kd values for lipoprotein binding. In contrast, the maximal number of binding sites correlated with the proliferative state of the cells and was independent of cell differentiation. The results are discussed with respect to cholesterol accumulation in adipose cells.  相似文献   

15.
High density lipoproteins (HDL) and their main protein constituent, apolipoprotein A-I (apoA-I), exert potentially anti-atherogenic properties within the arterial wall. However, it is unknown how they are transported from the blood stream into the vascular wall. Here we investigated the interaction of apoA-I with endothelial cells. At 4 degrees C endothelial cells bound 125I-apoA-I with high affinity, Kd = 2.1 microg/ml and in a saturable manner (Bmax of 35 ng/mg cell protein). At 37 degrees C, the cell association of apoA-I revealed similar affinity as at 4 degrees C (Kd = 2.2 microg/ml) but the maximum specific cell association was much enhanced (Bmax = 360 ng/mg cell protein). Binding and cell association was competed by excess unlabeled apoA-I and HDL but not by albumin. Biotinylation experiments and electron microscopy studies showed that endothelial cells internalize labeled apoA-I. Only minor amounts of the internalized apoA-I were degraded. Cultivated in a Transwell system, the cells transported a fraction of 125I-apoA-I from the apical to the basolateral compartment in a competable and temperature-sensitive manner. Furthermore, after specific transport the originally prebeta-mobile and lipid-free apoA-I was recovered as particles which have electrophoretic alpha-mobility. We conclude that endothelial cells transcytose and lipidate lipid-free apoA-I.  相似文献   

16.
Rat sinusoidal liver cells possess the surface receptor for high density lipoprotein (HDL) (Murakami, M., S. Horiuchi, K. Takata, and Y. Morino. 1987. J. Biochem. (Tokyo) 101: 729-741). The present study was undertaken to determine whether cell surface-bound HDL underwent subsequent endocytic internalization by using 125I-labeled HDL and fluorescein isothiocyanate-labeled HDL (FITC-HDL). The cell-associated radioactivity obtained by a 40-min incubation with 125I-labeled HDL at 37 degrees C was released into the medium as acid-precipitable forms upon further incubation at 37 degrees C. When further incubated at 0 degree C instead of 37 degrees C, however, this release was significantly reduced. A similar phenomenon was observed after the cell-associated ligands had been treated with trypsin. The cell-associated ligands obtained after a 1-hr incubation with 125I-labeled HDL at 0 degree C were largely counted for by those bound to the outer surface of the cells, thus suggesting that HDL is internalized into cells at 37 degrees C but not at 0 degree C. Moreover, when cells were incubated with FITC-HDL at 0 degree C, the cell-associated ligands were found in a pH 7.2 +/- 0.1 compartment, whereas when incubated at 37 degrees C, its microenvironmental pH became much more acidic, exhibiting pH 6.2 +/- 0.1. Furthermore, this value returned to 7.1 +/- 0.1 upon treatment with carbonylcyanide m-chlorophenylhydrazone known to dissipate the total protonomotive force. These results suggest, therefore, that the internalization process does follow receptor-mediated binding of HDL in rat sinusoidal liver cells. This notion was also supported by fluorescence microscopic observations.  相似文献   

17.
Copper deficiency in rats raises plasma cholesterol concentration while reducing live cholesterol concentration. One consequence of this cholesterol redistribution is the accumulation of a large high-density lipoprotein (HDL) particle rich in apolipoprotein E (apo E). The purpose of this study was to determine, using an in vitro binding assay, if the interaction of apo E-rich HDL with hepatic lipoprotein binding sites may be affected by copper deficiency. Male Sprague-Dawley rats were divided into two dietary treatments (copper-deficient and -adequate) and placed on a dietary regimen for 8 weeks. Subsequent to exsanguination, hepatic plasma membranes were prepared and apo E-rich HDL was isolated from rats of each treatment by ultracentrifugation, agarose column chromatography, and heparin-Sepharose affinity chromatography. Total binding and experimentally derived specific binding of 125I-apo E-rich HDl to hepatic plasma membranes indicated greater binding when lipoproteins and membranes from copper-deficient animals were used in the assay compared to controls. Scatchard analysis of specific binding data indicated that equilibrium binding affinity (Kd) was also affected by copper deficiency. The hepatic binding sites recognizing apo E-rich HDL were not affected by EDTA or pronase, of relatively high capacity, and recognized a variety of other rat lipoproteins.  相似文献   

18.
Copper deficiency in rats produces a hypercholesterolemia with a marked increase in HDL fraction. This study investigated changes in the plasma distribution and composition of HDL subclasses as affected by copper deficiency. Plasma HDL were separated into the following three subclasses by heparin-affinity chromatography: HDL containing no apo E but high in apo A-I (HDL-E0); HDL with an intermediate level of apo E (HDL-E1); and HDL highly enriched in apo E but low in apo A-I (HDL-E2). The compositional analysis showed that the hypercholesterolemia observed in copper-deficient rats was due specifically to an increase in plasma cholesterol carried by HDL-E0. Copper deficiency did not alter the percent distribution of apo A-I in HDL-E0, but lowered the apo A-I content in HDL-E1 and HDL-E2, with an increase in apo E in these subclasses. The total plasma concentration of apo A-I was, however, significantly elevated in Cu-deficient rats, which was attributable to an increase in the total number of circulating HDL particles. No difference was noted between Cu-deficient and control groups in the distribution of free cholesterol or the ratio of free cholesterol to esterified cholesterol in any of the HDL subclasses. The present results and earlier observations suggest that copper deficiency may produce a defect in the plasma clearance or tissue uptake of the HDL subclass high in apo A-I but devoid of apo E (HDL-E0), which may be mediated by the specific apo A-I receptor or non-endocytotic transfer of HDL-E0 cholesterol to the liver. Such metabolic defects may partly explain the simultaneous increases in both plasma HDL cholesterol and apo A-I and altered cholesterol homeostasis observed in copper deficiency.  相似文献   

19.
To clarify the mechanisms involved in the specific uptake of hematoporphyrin by cancer cells, we investigated the interaction of the heme- and/or hematoporphyrin-hemopexin complexes with rat hepatoma dRLh-84 cells. Hemopexin bound to the cells in a saturable, time- and temperature-dependent manner. The cells exhibited 0.55 nmol of binding sites/mg of protein for the heme-hemopexin complex and 0.38 nmol for the hematoporphyrin-hemopexin complex. The dissociation constants (Kd) for the heme-hemopexin and hematoporphyrin-hemopexin complexes were 0.57 and 0.54 microM, respectively. Specific binding of the labeled hemopexin was inhibited by the unlabeled heme- and hematoporphyrin-hemopexin complexes but was unaffected by albumin or neoglycoprotein. Hematoporphyrin bound to hemopexin was incorporated into the cells at 37 degrees C, but not at 4 degrees C. These results indicate that hematoporphyrin bound hemopexin was taken up by dRLh-84 cells, via the hemopexin receptors. When the hematoporphyrin-albumin complex was incubated with the cells, the hematoporphyrin-[125I]albumin complex bound to the cells in a time and temperature-dependent manner. Here the binding was not saturated up to 100 micrograms/ml of albumin. The binding of hematoporphyrin-[125I]albumin was partially inhibited by unlabeled albumin and hemopexin. Hematoporphyrin bound to albumin was taken up by the cells at 37 degrees C. Thus, the albumin-dependent uptake of hematoporphyrin by rat hepatoma dRL-84 cells could be differentiated from the hemopexin-mediated uptake of hematoporphyrin.  相似文献   

20.
The binding and metabolism of [3H]vitamin A-containing chylomicron (CM) remnants by the human hepatoma cell line HepG2 were studied. Mesenteric lymph chylomicrons were collected from [3H]retinol-fed rats and incubated with lipoprotein lipase to obtain CM remnants. At 4 degrees C, specific CM remnant binding was inhibited by an excess of unlabeled CM remnants. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 microgram triglyceride/ml). CM remnant uptake at 37 degrees C was greater than that of CM and at least 70 times more efficient than the pinocytosis of sucrose. CM remnant binding increased with the extent of lipolysis. Addition of human apolipoprotein E enhanced both CM remnant and CM binding. After internalization, HepG2 cells hydrolyzed CM remnant-[3H]retinyl esters, and radiolabeled metabolites accumulated. As a function of the concentration of [3H]retinoid initially bound to cells, retinol and retinyl esters accumulated as the major cell-associated metabolites. In contrast, retinol was the major metabolite in the medium only at low retinoid concentrations; other more polar metabolites accumulated at higher concentrations (greater than 110 pmol retinoid/mg cell protein). The accumulation in the medium of labeled metabolites derived from CM remnant-retinoid was reduced when cells were preincubated in unlabeled retinol-supplemented media. The specific activity of retinol in the medium indicated that CM remnant-vitamin A had mixed with the cellular store prior to its secretion as retinol. These results indicate that HepG2 cells internalize CM remnants in part by specific binding sites, and that the metabolism of CM remnant-retinoids by the HepG2 cell involves retinyl ester hydrolysis and the secretion of retinol and other more polar metabolites. These processes were regulated in part by the concentration of retinoid delivered by the CM remnant and by the initial retinoid content of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号