首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIABMan, two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIABMan, IICMan, IIDMan, and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIABMan as well as membrane fragments containing IICMan and IIDMan. These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIABMan.  相似文献   

2.
Infection of Escherichia coli by bacteriophage lambda depends on two membrane protein complexes: (i) maltoporin (LamB) in the outer membrane for adsorption and (ii) the IIC(Man)-IID(Man) complex of the mannose transporter in the inner membrane for DNA penetration. IIC(Man) and IID(Man) are components of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) which together with the IIAB(Man) subunit mediate transport and phosphorylation of sugars. To identify structural determinants important for penetration of lambda DNA, the homologous IIC-IID complexes of E. coli, K. pneumoniae and B. subtilis, and chimeric complexes between the IIC and IID were characterized. All three complexes support sugar transport in E. coli. Only IIC-IID of E. coli and B. subtilis also support bacteriophage lambda infection. The six chimeric complexes had lost transport activity, but three containing IIC of E. coli or B. subtilis continue to support bacteriophage lambda infection. Complexes containing IIC(Man) and fusion proteins between truncated IID(Man) and alkaline phosphatase or beta-galactosidase support penetration of lambda DNA if less than 100 residues are missing from the C-terminus of IID(Man). Truncation of IIC(Man) renders the complex unstable. Taken together, these results suggest, that IIC is the major specificity determinant for lambda infection but that the IIC subunit is stably expressed only in a complex with the IID subunit. Lambda DNA in transit across the periplasmic space, but not transforming plasmid DNA, is inaccessible to the non-specific nuclease NucA of Anabaena sp. targeted to the periplasmic space either in soluble form or as a fusion protein to the C-terminus of IID(Man).  相似文献   

3.
The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose. Expulsion of galactose is mediated via LacS and stimulated by phosphorylation of the transporter by HPr(His approximately P), a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). Unlike S. thermophilus, S. salivarius grew on lactose without expelling galactose and took up galactose and lactose concomitantly when it is grown in a medium containing both sugars. Analysis of the C-terminal end of S. salivarius LacS revealed a IIA-like domain (IIA(LacS)) almost identical to the IIA domain of S. thermophilus LacS. Experiments performed with purified proteins showed that S. salivarius IIA(LacS) was reversibly phosphorylated on a histidine residue at position 552 not only by HPr(His approximately P) but also by HPr(Ser-P)(His approximately P), a doubly phosphorylated form of HPr present in large amounts in rapidly growing S. salivarius cells. Two other major S. salivarius PTS proteins, IIAB(L)(Man) and IIAB(H)(Man), were unable to phosphorylate IIA(LacS). The effect of LacS phosphorylation on growth was studied with strain G71, an S. salivarius enzyme I-negative mutant that cannot synthesize HPr(His approximately P) or HPr(Ser-P)(His approximately P). These results indicated that (i) the wild-type and mutant strains had identical generation times on lactose, (ii) neither strain expelled galactose during growth on lactose, (iii) both strains metabolized lactose and galactose concomitantly when grown in a medium containing both sugars, and (iv) the growth of the mutant was slightly reduced on galactose.  相似文献   

4.
Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, a maltose- and maltodextrin-specific porin of the outer membrane. LamB also serves as a receptor for several other bacteriophages. Lambda DNA requires, in addition to LamB, the presence of two bacterial cytoplasmic integral membrane proteins for penetration, namely, the IIC(Man) and IID(Man) proteins of the E. coli mannose transporter, a member of the sugar-specific phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS transporters for mannose of E. coli, for fructose of Bacillus subtilis, and for sorbose of Klebsiella pneumoniae were shown to be highly similar to each other but significantly different from other PTS transporters. These three enzyme II complexes are the only ones to possess distinct IIC and IID transmembrane proteins. In the present work, we show that the fructose-specific permease encoded by the levanase operon of B. subtilis is inducible by mannose and allows mannose uptake in B. subtilis as well as in E. coli. Moreover, we show that the B. subtilis permease can substitute for the E. coli mannose permease cytoplasmic membrane components for phage lambda infection. In contrast, a series of other bacteriophages, also using the LamB protein as a cell surface receptor, do not require the mannose transporter for infection.  相似文献   

5.
6.
7.
8.
In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a beta-glucoside-specific EII and a 6-P-beta-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methyl beta-D-thiogalactoside (TMG) and 2-deoxy-D-glucose (2-DG). In vivo experiments with the ptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.  相似文献   

9.
A promoter-like mutation, ptsP160, has been identified which drastically reduces expression of the genes specifying two proteins, HPr and enzyme I, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Salmonella typhimurium. This mutation lies between trzA, a gene specifying susceptibility to 1,2,4-triazole, and ptsH, the structural gene for HPr. It leads to a loss of active transport of those sugars that require the PTS for entry into the cell. Pseudorevertants of strains carrying this promoter-like mutation have additional lesions very closely linked to ptsP160 by transduction analysis and are noninducible for HPr and enzyme I above a basal level. Presumably, strains carrying ptsP160 are defective in the normal induction mechanism for HPr and enzyme I, and the pseudorevertants derived from them result from second-site initiation signals within or near this promoter-like element. The induction of HPr and enzyme I above their noninduced levels apparently is not required for transport of at least one PTS sugar, methyl alpha-d-glucopyranoside, since this sugar is taken up by the pseudorevertants at the same rate as by the wild type. The existence of a promoter-like element governing the coordinate inducibility of both HPr and enzyme I suggests that ptsH and ptsI constitute an operon. Wild-type levels of a sugar-specific PTS protein, factor III, are synthesized in response to the crr(+) gene in both a ptsP160 strain and its pseudorevertants; this suggests that the crr(+) gene has its own promoter distinct from ptsP.  相似文献   

10.
Glycolysis is one of the main pathways of carbon catabolism in Bacillus subtilis. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase, the key enzyme of glycolysis from an energetic point of view, is induced by glucose and other sugars. Two regulators are involved in induction of the gapA operon, the product of the first gene of the operon, the CggR repressor, and catabolite control protein A (CcpA). CcpA is required for induction of the gapA operon by glucose. Genetic evidence has demonstrated that CcpA does not control the expression of the gapA operon by binding directly to a target in the promoter region. Here, we demonstrate by physiological analysis of the inducer spectrum that CcpA is required only for induction by sugars transported by the phosphotransferase system (PTS). A functional CcpA is needed for efficient transport of these sugars. This interference of CcpA with PTS sugar transport results from an altered phosphorylation pattern of HPr, a phosphotransferase of the PTS. In a ccpA mutant strain, HPr is nearly completely phosphorylated on a regulatory site, Ser-46, and is trapped in this state, resulting in its inactivity in PTS phosphotransfer. A mutation in HPr affecting the regulatory phosphorylation site suppresses both the defect in PTS sugar transport and the induction of the gapA operon. We conclude that a low-molecular effector derived from glucose that acts as an inducer for the repressor CggR is limiting in the ccpA mutant.  相似文献   

11.
In streptococci, HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS), undergoes multiple posttranslational chemical modifications resulting in the formation of HPr(His approximately P), HPr(Ser-P), and HPr(Ser-P)(His approximately P), whose cellular concentrations vary with growth conditions. Distinct physiological functions are associated with specific forms of HPr. We do not know, however, the cellular thresholds below which these forms become unable to fulfill their functions and to what extent modifications in the cellular concentrations of the different forms of HPr modify cellular physiology. In this study, we present a glimpse of the diversity of Streptococcus salivarius ptsH mutants that can be isolated by positive selection on a solid medium containing 2-deoxyglucose and galactose and identify 13 amino acids that are essential for HPr to properly accomplish its physiological functions. We also report the characterization of two S. salivarius mutants that produced approximately two- and threefoldless HPr and enzyme I (EI) respectively. The data indicated that (i) a reduction in the synthesis of HPr due to a mutation in the Shine-Dalgarno sequence of ptsH reduced ptsI expression; (ii) a threefold reduction in EI and HPr cellular levels did not affect PTS transport capacity; (iii) a twofold reduction in HPr synthesis was sufficient to reduce the rate at which cells metabolized PTS sugars, increase generation times on PTS sugars and to a lesser extent on non-PTS sugars, and impede the exclusion of non-PTS sugars by PTS sugars; (iv) a threefold reduction in HPr synthesis caused a strong derepression of the genes coding for alpha-galactosidase, beta-galactosidase, and galactokinase when the cells were grown at the expense of a PTS sugar but did not affect the synthesis of alpha-galactosidase when cells were grown at the expense of lactose, a noninducing non-PTS sugar; and (v) no correlation was found between the magnitude of enzyme derepression and the cellular levels of HPr(Ser-P).  相似文献   

12.
13.
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS) controls sugar uptake and carbon utilization in low-GC Gram-positive bacteria and in Gram-negative bacteria. We have purified HPr from Streptomyces coelicolor cell extracts. The N-terminal sequence matched the product of an S. coelicolor orf, designated ptsH, sequenced as part of the S. coelicolor genome sequencing project. The ptsH gene appears to form a monocistronic operon. Determination of the evolutionary relationship revealed that S. coelicolor HPr is equally distant to all known HPr and HPr-like proteins. The presumptive phosphorylation site around histidine 15 is perfectly conserved while a second possible phosphorylation site at serine 47 is not well-conserved. HPr was overproduced in Escherichia coli in its native form and as a histidine-tagged fusion protein. Histidine-tagged HPr was purified to homogeneity. HPr was phosphorylated by its own enzyme I (EI) and heterologously phosphorylated by EI of Bacillus subtilis and Staphylococcus aureus, respectively. This phosphoenolpyruvate-dependent phosphorylation was absent in an HPr mutant in which histidine 15 was replaced by alanine. Reconstitution of the fructose-specific PTS demonstrated that HPr could efficiently phosphorylate enzyme IIFructose. HPr-P could also phosphorylate enzyme IIGlucose of B. subtilis, enzyme IILactose of S. aureus, and IIAMannitol of E. coli. ATP-dependent phosphorylation was detected with HPr kinase/phosphatase of B. subtilis. These results present the first identification of a gene of the PTS complement of S. coelicolor, providing the basis to elucidate the role(s) of HPr and the PTS in this class of bacteria.  相似文献   

14.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

15.
Streptococcus mutans transports glucose via the phosphoenolpyruvate (PEP)-dependent sugar phosphotransferase system (PTS). Earlier studies indicated that an alternate glucose transport system functions in this organism under conditions of high growth rates, low pH, or excess glucose. To identify this system, S. mutans BM71 was transformed with integration vector pDC-5 to generate a mutant, DC10, defective in the general PTS protein enzyme I (EI). This mutant expressed a defective EI that had been truncated by approximately 150 amino acids at the carboxyl terminus as revealed by Western blot (immunoblot) analysis with anti-EI antibody and Southern hybridizations with a fragment of the wild-type EI gene as a probe. Phosphotransfer assays utilizing 32P-PEP indicated that DC10 was incapable of phosphorylating HPr and EIIAMan, indicating a nonfunctional PTS. This was confirmed by the fact that DC10 was able to ferment glucose but not a variety of other PTS substrates and phosphorylated glucose with ATP and not PEP. Kinetic assays indicated that the non-PTS system exhibited an apparent Ks of 125 microM for glucose and a Vmax of 0.87 nmol mg (dry weight) of cells-1 min-1. Sugar competition experiments with DC10 indicated that the non-PTS transport system had high specificity for glucose since glucose transport was not significantly by a 100-fold molar excess of several competing sugar substrates, including 2-deoxyglucose and alpha-methylglucoside. These results demonstrate that S. mutans possesses a glucose transport system that can function independently of the PEP PTS.  相似文献   

16.
17.
We report the presence of Mlc in a thermophilic bacterium. Mlc is known as a global regulator of sugar metabolism in gram-negative enteric bacteria that is controlled by sequestration to a glucose-transporting EII(Glc) of the phosphotransferase system (PTS). Since thermophilic bacteria do not possess PTS, Mlc in Thermus thermophilus must be differently controlled. DNA sequence alignments between Mlc from T. thermophilus (Mlc(Tth)) and Mlc from E. coli (Mlc(Eco)) revealed that Mlc(Tth) conserved five residues of the glucose-binding motif of glucokinases. Here we show that Mlc(Tth) is not a glucokinase but is indeed able to bind glucose (K(D) = 20 microM), unlike Mlc(Eco). We found that mlc of T. thermophilus is the first gene within an operon encoding an ABC transporter for glucose and mannose, including a glucose/mannose-binding protein and two permeases. malK1, encoding the cognate ATP-hydrolyzing subunit, is located elsewhere on the chromosome. The system transports glucose at 70 degrees C with a K(m) of 0.15 microM and a V(max) of 4.22 nmol per min per ml at an optical density (OD) of 1. Mlc(Tth) negatively regulates itself and the entire glucose/mannose ABC transport system operon but not malK1, with glucose acting as an inducer. MalK1 is shared with the ABC transporter for trehalose, maltose, sucrose, and palatinose (TMSP). Mutants lacking malK1 do not transport either glucose or maltose. The TMSP transporter is also able to transport glucose with a K(m) of 1.4 microM and a V(max) of 7.6 nmol per min per ml at an OD of 1, but it does not transport mannose.  相似文献   

18.
The nucleotide sequence of a Salmonella typhimurium DNA segment of 549 base pairs which encompasses the operator-promoter of the pts operon, the entirety of the ptsH gene, encoding HPr of the phosphotransferase system (PTS), the first 29 nucleotides of the ptsI gene, encoding Enzyme I of the PTS, and the intercistronic region between the ptsH and ptsI genes was determined and compared with the corresponding sequence from Escherichia coli (De Reuse et al., 1985). The two sequences showed 91% overall identity, with some regions showing sequence conservation and others exhibiting relative divergence. Two open reading frames were identified in both species: one encoded HPr on the 'sense' strand (255 nucleotides; 12 nucleotide differences, no amino acid differences); the other, on the anti-sense strand, consisted of 291 nucleotides (13 nucleotide differences, 13 amino acid differences). While HPr bears a net negative charge, the putative protein encoded by the open reading frame on the anti-sense strand is strongly basic. Computer analyses of HPr proteins from five different bacterial genera revealed four regions which show strong sequence identity and therefore are presumed to be critical for maintenance of biological activity. Two of these regions were specific to Gram-positive bacteria. Proposed functions for each of these regions are discussed. Relative evolutionary distances between the HPr proteins were also computed.  相似文献   

19.
20.
Sugars transported by a bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) require two soluble proteins: HPr, a low-molecular-weight phosphate-carrier protein, and enzyme I. The structural genes coding for HPr (ptsH) and Enzyme I (ptsI) are shown to be cotransducible in Salmonella typhimurium. The gene order of this region of the Salmonella chromosome is cysA-trzA-ptsH-ptsI...(crr). A method for the isolation of trzA-pts deletion is described. One class of pts deletions extends through ptsH and into ptsI; a second class includes both ptsH and ptsI and extends into or through the crr gene. The crr gene either codes for or regulates the synthesis of a third PTS protein (factor III) which is sugar-specific. A hypothesis is presented for a mechanism of deletion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号