首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of addition of product on the amplitude of the “burst” reaction of horse liver alcohol dehydrogenase was studied using a stopped-flow spectrophotofluorimeter. The amplitude of the “burst” formation of enzyme-bound NADH fluorescence was completely diminished by the addition of excess acetaldehyde or benzaldehyde in the reaction with NAD+ and ethanol or NAD+ and benzylalcohol, respectively. The results indicate that a significant concentration of the ternary enzyme-coenzyme-substrate complex was formed during the steady-state in the presence of product, and this ternary complex did not exhibit NADH fluorescence. The dissociation constants for the ternary complex were determined from the amplitudes of the “burst” reactions. The “active site” titration of the enzyme with NAD+ in the presence of ethanol and iso-butyramide is also described.  相似文献   

2.
The isolation and characterization of a new methanogen from a peat bog, Methanobacterium palustre spec. nov., strain F, is described. Strain F grew on H2/CO2 and formate in complex medium. It also grew autotrophically on H2/CO2. Furthermore, growth on 2-propanol/CO2 was observed. Methane was formed from CO2 by oxidation of 2-propanol to acetone or 2-butanol to 2-butanone, but growth on 2-butanol plus CO2 apparently was too little to be measurable. Similarly, Methanobacterium bryantii M. o. H. and M. o. H. G formed acetone and 2-butanone from 2-propanol and 2-butanol, but no growth was measurable.On the basis of morphological and biochemical features strain F could be excluded from the genus Methanobrevibacter. Due to its cell morphology, lipid composition and polyamine pattern it belonged to the genus Methanobacterium. From known members of this genus strain F could be distinguished either by a different G+C content of the DNA, low DNA-DNA homology with reference strains, lacking serological reactions with anti-S probes and differences in the substrate spectrum.An alcohol dehydrogenase activity, specific for secondary alcohols and its substrate specificity was determined in crude extracts of strain F. NADP+ was the only electron carrier that was utilized. No reaction was found with NAD+, F420, FMN and FAD.Abbreviations NAD+ nicotinamide adenine dinucleotide - NADH2 reduced form of NAD+ - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH2 reduced form of NADP+ - FMN flavin adenine mononucleotide - FAD flavin adenine dinucleotide - ADH alcohol dehydrogenase - F420 8-hydroxy-7,8-didemethyl-5-deazaflavin - SSC standard saline citrate (0.15 M NaCl, 0.015 M trisodium citrate, pH 7.5)  相似文献   

3.
Summary Gastric fundic metabolism was studied by spectroscopic observation in frog mucosa during transitions of secretory status in vitro and by direct measurement of pyridine nucleotides and associated metabolites in biopsies of dog fundic mucosa also during secretory oxidation of the redox components from flavin adenine dinucleotide (FAD) to cytochromea 3. Addition of histamine resulted in reduction of these components with onset of secretion by about 50%. In contrast, the effect of apparently, burimamide and subsequently histamine on the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced (NAD+/NADH) was relatively slight. Further, the presence of burimamide substantially reduces the effect of amytal on the pyridine nucleotide spectrum and abolishes the effect of amytal on FAD and the cytochromes. Measurements of lactate, pyruvate, -ketoglutarate, NH3 and glutamate in the dog showed that whereas the calculated NAD+/NADH ratio in the cytoplasm declined with onset of secretion, the calculated mitochondrial ratio rose. No change was noted in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate, reduced (NADP+/NADPH) ratio. It is concluded that (1) H2 antagonists act by blocking substrate flow into the mitochondrial respiratory chain, (2) conversely, histamine stimulation acts at the level of substrate mobilization, and (3) there may be a cross-over in the mitochondrial chain between NAD+ and FAD.  相似文献   

4.
Active site substituted Cd(II) horse liver alcohol dehydrogenase has been studied by Perturbed Angular Correlation of Gamma rays Spectroscopy during turnover conditions for benzaldehyde and 4-trans-(N,N-dimethylamino)cinnamaldehyde. The ternary complex between alcohol dehydrogenase NAD+ and Cl, and the binary complex between alcohol dehydrogenase and orthophenanthroline have also been studied. The Nuclear Quadrupole Interaction parameters have been interpreted in terms of different coordination geometries for Cd(II) in the catalytic zinc site of the enzyme. Calculation of the nuclear quadrupole interaction for cadmium in the catalytic site of the enzyme with and without coenzyme, based upon the four coordinated geometries determined from X-ray diffraction, agrees with the experimentally determined values. The ternary complexes between enzyme, NAD+ and either Cl or trifluoroethanol and the binary complex between enzyme and orthophenanthroline have almost identical spectral parameters which are not consistent with a four coordinated geometry, but are consistent with a five coordinated geometry. The nonprotein ligands for the ternary complex with trifluoroethanol are suggested to be an alkoxide group and a water molecule. The Nuclear Quadrupole Interaction parameters for the productive ternary complex between enzyme, NADH and an aldehyde is consistent with the four coordinated geometry predicted from X-ray diffraction data having the carbonyl group of the aldehyde substituting the water molecule as ligand to the metal.Abbreviations LADH Horse liver alcohol dehydrogenase - H4Zn2LADH derivative of LADH free of zinc in the catalytic site - 111CdZn2LADH derivative of LADH with 111Cd (carrier free) in the catalytic site - Cd2Zn2LADH derivative of LDH with 2 mole of Cd(II) per mole LADH in the catalytic site - PAC pertubed angular correlation of gamma rays - NQI Nuclear quadrupole interaction - AOM Angular overlap model - trifluoroethanol 2,2,2-trifluoroethanol - DACA trans-4-(N,N-dimethylamino)cinnamaldehyde - NAD+ and NADH oxidized and reduced nicotinamide adenine dinucleotide - NADH2 reduced 1,4,5,6-tetrahydronicotinamide adenine dinucleotide The experimental work was carried out at the Niels Bohr Institute Risø, 4000 Roskilde and Blegdamsvej 19, 2100 Copenhagen, Denmark Offprint requests to: R. Bauer  相似文献   

5.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD+ and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD+ cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD+ binds in an extended conformation with a distance of 15 Å between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD+, with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD+-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

6.
The pH dependence of the 13C chemical shifts for nicotinamide adenine dinucleotide (NAD+), thionicotinamide adenine dinucleotide (TNAD+), pyridine adenine dinucleotide (PyrAD+), N-methyl-nicotinamide adenine dinucleotide (N-Me-NAD+), acetylpyridine adenine dinucleotide (AcPyAD+), nicotinamide hypoxanthine dinucleotide (NHD+), and nicotinamide adenine dinucleotide phosphate (NADP+) are reported. In these analogs the 13C chemical shifts of the pyridinium moiety reflect the pKa of the opposing purine base, while the 13C chemical shift dependence on pD for the pyridinium carbons of nicotinamide mononucleotide (NMN+) and adenosine monophosphate (AMP), 1,4-dihydronicotinamide adenine dinucleotide (NADH), 1,4-dihydronicotinamide adenine dinucleotide phosphate (NADPH), and nicotinic acid adenine dinucleotide (N(a)AD+) are not influenced by the adenine ring in the pD range tested. Through the use of 13C-labeled NAD+, the source of the pH dependence of the 13C chemical shifts was shown to be intramolecular in origin. However, serious doubt is cast on the utility of employing the pD dependence of chemical shift data to determine the nature of solution conformers or their relative populations.  相似文献   

7.
The NAD+ analogue, 3-aldoxime pyridine adenine dinucleotide, is prepared by transglycosidation. Contrary to the published data, this analogue shows no activity as coenzyme with alcohol dehydrogenase from horse liver or from yeast. This is demonstrated by three methods: no increase of absorption at 331 nm by the enzymic oxidation of ethanol; no increase at 290 nm with cinnamic alcohol; and no exchange reaction. The inhibition by this analogue of the oxidation of ethanol by NAD+ is competitive at pH 7.6 and 9.5 with yeast alcohol dehydrogenase; with liver alcohol dehydrogenase, it is of the mixed type at pH 7.6 and non-competitive at pH 9.5. The lack of activity of the analogue and inhibition of the competitive or mixed type may be explained by the fact that the binary complex does not bind the substrate or that in the ternary complex the hydride shift does not occur. The non-competitive inhibition at pH 9.5 with the horse liver alcohol dehydrogenase may be explained by the existence of binding sites specific for this analogue.  相似文献   

8.
《Free radical research》2013,47(6):397-402
The nicotinamide adenine dinucleotide dimers (NAD)2 obtained by electrochemical reduction of NAD+ are oxidized by adriamycin in anaerobic photocatalyzed reaction yielding NAD+ and 7-deoxyadriamyci-none. Under the same conditions NADH is not oxidized.  相似文献   

9.
As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD+ or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD+ is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD+ and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc), and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD+-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis.  相似文献   

10.
The fluorescent 1,N6-ethenoadenosine derivatives of adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, 3′:5′-cyclic adenosine monophosphate, adenosine and nicotinamide adenine dinucleotide have been prepared. Paper and thin layer chromatographic purification methods have been developed. Nuclear magnetic resonance and mass spectrum data indicate that only the purine ring has been modified.The 1,N6-ethenoadenosine triphosphate had about 70% of the activity of adenosine triphosphate as a substrate for total adenosine triphosphatase activity of hypophysectomized rat liver membranes. The 1,N6-ethenoadenosine diphosphate had about 86% of the activity of adenosine diphosphate as a substrate for adenosine diphosphatase of hypophysectomized rat liver membranes. The 1,N6-etheno derivative of nicotinamide adenine dinucleotide had about 8% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide glycohydrolase and about 54% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide pyrophosphatase of hypophysectomized rat liver membranes.Km's for the ATPase, ADPase and yeast alcohol dehydrogenase using ε-ATP and ε-ADP and ε-NAD as substrates are presented.  相似文献   

11.
In this work, we have postulated a comprehensive and unified chemical mechanism of action for yeast alcohol dehydrogenase (EC 1.1.1.1, constitutive, cytoplasmic), isolated from Saccharomyces cerevisiae. The chemical mechanism of yeast enzyme is based on the integrity of the proton relay system: His-51....NAD+....Thr-48....R.CH2OH(H2>O)....Zn++, stretching from His-51 on the surface of enzyme to the active site zinc atom in the substrate-binding site of enzyme. Further, it is based on extensive studies of steady-state kinetic properties of enzyme which were published recently. In this study, we have reported the pH-dependence of dissociation constants for several competitive dead-end inhibitors of yeast enzyme from their binary complexes with enzyme, or their ternary complexes with enzyme and NAD+ or NADH; inhibitors include: pyrazole, acetamide, sodium azide, 2-fluoroethanol, and 2,2,2-trifluorethanol. The unified mechanism describes the structures of four dissociation forms of apoenzyme, two forms of the binary complex E.NAD+, three forms of the ternary complex E.NAD+.alcohol, two forms of the ternary complex E.NADH.aldehyde and three binary complexes E.NADH. Appropriate pKa values have been ascribed to protonation forms of most of the above mentioned complexes of yeast enzyme with coenzymes and substrates.  相似文献   

12.
A mixture of dimers of nicotinamide adenine dinucleotide, largely 4,4?-linked, obtained by electrochemical reduction of NAD+, can be photooxidized back to NAD+ in the presence of oxygen. Oxygen is consumed during the photooxidation process with the production of hydrogen peroxide. The oxidation is almost pH independent and is stimulated by light whose wavelength exceeds 300 nm. Lactate dehydrogenase and alcohol dehydrogenase added to the solutions under irradiation increased the oxygen uptake by the NAD dimers in a concentration-dependent way. These observations suggest that light induces the homolytic cleavage of NAD dimers to NAD radicals which in turn are oxidized to NAD+ by oxygen.  相似文献   

13.
An activity was identified in a phosphate buffer extract of calf liver acetone powder which utilized 2-mercaptoethanol and NAD+ as substrates and formed NADH as one product. The activity responsible for catalyzing this reaction is associated with calf liver alcohol dehydrogenase based on copurification, similarity in pH optima, and similarity in response to chelating agents and other inactivating agents. Crystalline horse liver alcohol dehydrogenase also catalyzes the formation of NADH from NAD+ using 2-mercaptoethanol as the substrate. Although the Km for mercaptoethanol is much lower than that for ethanol, 30 μm as compared to 0.625 mm, the maximum velocity with mercaptoethanol as the substrate is only 7% of that when ethanol is the substrate. Because of this difference in maximum velocity, 2-mercaptoethanol is an apparent competitive inhibitor with respect to ethanol with crystalline horse liver alcohol dehydrogenase, consistent with ethanol and 2-mercaptoethanol binding at the same site. The apparent Ki for 2-mercaptoethanol is 14 μm. 2-Butanethiol is a competitive inhibitor with respect to both 2-mercaptoethanol and ethanol with horse and beef liver alcohol dehydrogenases.  相似文献   

14.
A hollow fiber module was used as a reactor for conversion of ethanol to acetaldehyde in the presence of horse liver alcohol dehydrogenase as catalyst. Mass transport rates for NAD+, the overall acetaldehyde generation rate, catalyst effectiveness factors, and the overall order of the reaction with respect to NAD+ concentration were measured. A coupled-substrate reactor with continuous in situ regeneration of cofactor was also examined. Two substrates of opposite redox state were added simultaneously to the feed stream. NADH and acetaldehyde concentrations were monitored in the effluent stream. The cofactor recycle number, or ratio of moles of product to moles of NADH produced, exceeded 10,000 under certain conditions. While decreasing the NAD+ concentration in the feed stream decreased reactor productivity somewhat, it greatly enhanced the ratio of product formed per mole of NAD+ fed to the reactor. It is suggested that high cofactor costs in dehydrogenase reactors may be overcome with efficient in situ regeneration and secondary recovery and recycling of cofactor from the process stream.  相似文献   

15.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

16.
The proton magnetic resonance spectra of the dihydronicotinamide ring of αNADH3 and the nicotinamide ring of αNAD+ are reported and the proton absorptions assigned. The absolute assignment of the C4 methylene protons of αNADH is based on the generation of specifically deuterium-labeled (pro-S) B-deuterio-αNADH from enzymatically prepared B-deuterio-βNADH. The C4 proton absorption of αNAD+ is assigned by oxidation of B-deuterio-αNADH by the A specific, yeast alcohol dehydrogenase to yield 4-deuterio-αNAD+.The epimerization of either αNADH or βNADH yields an equilibrium ratio of approximately 9:1 βNADH to αNADH. The rate of epimerization of αNADH to βNADH at 38 °C in 0.05, pH 7.5, phosphate buffer is 3.1 × 10?3 min?1, corresponding to a half-life of 4 hr. Four related dehydrogenases, yeast and horse liver alcohol dehydrogenase and chicken M4 and H4 lactate dehydrogenase, are shown to oxidize αNADH to αNAD+ at rates three to four orders of magnitude slower than for βNADH. By using specifically labeled B-deuterio-αNADH the enzymatic oxidation by yeast alcohol dehydrogenase has been shown to occur with the identical stereospecificity as the oxidation of βNADH. The nonenzymatic epimerization of αNADH to βNADH and the enzymatic oxidation αNADH are discussed as a possible source of αNAD+in vivo.  相似文献   

17.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

18.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

19.
The kinetic mechanism of betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus is ordered with NAD+ adding first. NADH is a noncompetitive inhibitor against NAD+, which was interpreted before as evidence of an iso mechanism, in which NAD+ and NADH binds to different forms of free enzyme. With the aim of testing the proposed kinetic mechanism, we have now investigated the ability of NADH to form different complexes with the enzyme. By initial velocity and equilibrium binding studies, we found that the steady-state levels of E.glycine betaine are negligible, ruling out binding of NADH to this complex. However, NADH readily bind to E.betaine aldehyde, whose levels most likely are kinetically significant given its low dissociation constant. Also, NADH combined with E.NADH and E.NAD+. Finally, NADH was not able to revert the hydride transfer step, what suggest that there is no acyl-enzyme intermediate, i.e. the release of the reduced dinucleotide takes place after the deacylation step. Although formation of the complex E.NAD+.NADH would produce an uncompetitive effect in the inhibition of NADH against NAD+, the iso mechanism cannot be conclusively discarded.  相似文献   

20.
A modified Polyethylenimine has been prepared that has riboflavin attached to it, as well as hydrophobic groups. The catalytic efficiency toward oxidation of6 dihydronicotinamide adenine dinucleotide (NADH) by this flavopolymer is more than 100-fold greater than observed with small-molecular riboflavin. The products of the reaction in aerobic solution have been established to be the oxidized nicotinamide NAD+ and hydrogen peroxide. The kinetics fit a Michaelis-Menten mechanism. Thus, the versatility of modified polyethylenimines as catalysts has been extended from hydrolyses and decarboxylations to oxidation-reduction reactions also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号