首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  The susceptibility of Delia floralis eggs, neonates and larvae and the susceptibility of Galleria mellonella and Mamestra brassicae larvae to seven different Norwegian isolates of the insect pathogenic, hyphomycetous fungi Tolypocladium cylindrosporum , Metarhizium anisopliae and Beauveria bassiana , were investigated. Metarhizium anisopliae isolate ARSEF 5520 was highly virulent to G. mellonella larvae and caused 100% mortality when tested at a concentration of 3.6 × 106 conidia/ml. The same M. anisopliae isolate was not virulent to D. floralis larvae. Isolates of T.cylindrosporum , were equally virulent to G. mellonella and D. floralis causing up to 36.0% mortality of larvae. It is suspected, however, that the use of grated rutabaga as a food source in the D. floralis bioassay reduced the fungal virulence of both M. anisopliae and T. cylindrosporum to D. floralis . Among three T. cylindrosporum isolates tested at a concentration of 1.0 × 107 conidia/ml against eggs of D. floralis none of them reduced the hatching percentage. One isolate, ARSEF 5525 did, however, significantly reduce the longevity of neonates. Beauveria bassiana isolates ARSEF 5510 and ARSEF 5370 tested at a concentration of 1.0 × 107 conidia/ml resulted in M. brassicae mortality levels of 70.0 and 55.0%, respectively. The B. bassiana isolate ARSEF 5557, however, was not virulent to M. brassicae . Among the three isolates tested against M. brassicae the two virulent isolates produced a red pigment, probably oosporein, when cultured in Sabouraud dextrose agar.  相似文献   

2.
Laboratory experiments were done to measure the susceptibility of larvae and adults of the onion maggot, Delia antiqua (Meigen) (Diptera: Muscidae: Anthomyiidae) to 27 isolates of entomopathogenic fungi from four genera [Beauveria Vuillemin, Lecanicillium (Petch) Zare & W. Gams, Metarhizium Sorokin, and Paecilomyces Bainier]. A novel bioassay was developed for D. antiqua larvae by using a diet based on mixed vegetable powder. When evaluated in a virulence screen, the fungal isolates caused less mortality of D. antiqua larvae than adults. Only three isolates caused > 50% mortality of larvae, whereas 12 isolates caused > 50% mortality of adults. Fungal species was a statistically significant factor affecting the mortality of larvae but not of adults. The fungal isolates causing the most mortality of larvae tended to belong to Metarhizium anisopliae (Metschnikoff) Sorokin. Two M. anisopliae isolates (389.93 and 392.93) were evaluated in dose-response bioassays. The median lethal concentrations of the isolates against larvae were 6.1 x 10(7) conidia ml(-1) for isolate 389.93 and 7.6 x 10(7) conidia ml(-1) for isolate 392.93. The emergence of adult flies from pupae was reduced at high concentrations of conidia (3.0 x 10(8) and 1.0 x 10(8) conidia ml(-1)). The median lethal concentrations of the isolates against adults were 1.7 x 10(7) and 4.0 x 10(7) conidia ml(-1), respectively. Some of the fungal isolates examined may have potential as biological control agents of larvae of D. antiqua and related species.  相似文献   

3.
Entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana, have been shown to be efficacious in killing mosquito larvae of different mosquito species. The current study compared the pathogenicity and efficacy of two formulations of three fungal strains against different instars of three mosquito species with the aim of identifying the most virulent strain for use under field conditions. Three strains of Metarhizium, ARESF 4556, ARSEF 3297 and V275, were assayed against early (L2?3) and late (L3–4) instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Two formulations of the fungi were tested, dry conidia and aqueous suspensions (i.e. ‘wet’ conidia). Effects of all combinations of conidia, mosquito species, instar, fungal strain and concentration on mosquito mortality were analysed using Cox regression and Kaplan–Meier analyses. Strain ARSEF 4556 was more virulent than ARSEF 3297 and V275, with LT50 values ranging from 0.3 to 1.1 days, with Anopheles and Culex being more susceptible than Aedes. Early and late instars were equally susceptible independent of species. Although the formulation did influence mortality rates, both ‘wet’ and ‘dry’ conidia applications were highly effective in killing mosquito larvae. Viable spores were more efficacious than heat killed spores. The latter did cause mortality but only at high concentrations. Metarhizium sp. has proved to be effective in reducing survivability of all larval stages of Aedes, Anopheles and Culex under laboratory conditions. Aedes larvae were generally more tolerant than Anopheles and Culex irrespective of fungal strain.  相似文献   

4.
The interspecific thermotolerance of several species of entomopathogenic fungi was evaluated based on the conidial water affinity. The species were divided between hydrophilic and hydrophobic conidia. The species with hydrophobic conidia were Beauveria bassiana (ARSEF 252), Metarhizium brunneum (ARSEF 1187), Metarhizium robertsii (ARSEF 2575), Isaria fumosorosea (ARSEF 3889) and Metarhizium anisopliae s.l. (ARSEF 5749). The species with hydrophilic conidia were Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), Simplicillium lanosoniveum (ARSEF 6430), Lecanicillium aphanocladii (ARSEF 6433), S. lanosoniveum (ARSEF 6651), Aschersonia placenta (ARSEF 7637) and Aschersonia aleyrodis (ARSEF 10276). The conidial surface tension of each isolate was also studied. Conidial suspensions were exposed to 38, 41 or 45 °C. After exposure, the suspensions were inoculated on media and conidial germination was evaluated. Considerable differences in thermotolerance were found among the 12 entomopathogenic fungal species. Species with hydrophobic conidia were generally more thermotolerant than species with hydrophilic conidia. All isolates with hydrophobic conidia showed higher conidial surface tension than the isolates with hydrophilic conidia.  相似文献   

5.
Twelve fungal strains including Lecanicillium muscarium (Petch.) Zare and Gams, Isaria farinosa (Holmsk.) Fr., Fusarium sp., Beauveria bassiana Sensu Lato and Beauveria sp. were isolated from larvae and adults of D. micans. In addition, virulence of these isolates against this pest was determined. Conidia suspensions of 1×106 conidia mL–1 were applied to larvae and adults. The highest mortality and mycosis for larvae were obtained from isolate ARSEF 9271 (Beauveria bassiana) with 90% mortality and mycosis within 10 days. ARSEF 9271 also produced 93% mortality and mycosis in adults. On the other hand, the highest mortality and mycosis for adults were obtained with isolate ARSEF 9272 (Beauveria sp.), with 100% mortality and 80% mycosis within 10 days. These results indicate that isolates ARSEF 9271 and ARSEF 9272 seem to be the most promising potential fungal biocontrol agents against D. micans.  相似文献   

6.
Abstract: The potential of some isolates of Metarhizium anisopliae and Beauveria bassiana for use in the integrated management of Culex quinquefasciatus was evaluated. Metarhizium anisopliae isolate 1037 was selected in initial bioassays with a 50% lethal concentration (LC50) of 1.97 × 104 conidia/ml. This fungus caused higher mosquito larva mortality when applied as a conidial suspension to the surface of the water than as dry conidia, with a time to 50% lethal (LT50) of 1 day compared with 3.6 days for the dry conidial application. However, results with UV- and heat-inactivated conidia did not confirm a possible role of fungal toxins in causing mortality when ingested by C. quinquefasciatus larvae. Metarhizium anisopliae did not remain active for as long as the bacterium Bacillus sphaericus isolate 2362. At 24 h after application, the fungus-induced mortality on mosquito larvae was significantly lower than the mortality caused by the bacterium. By the second day, almost no activity by the fungus was observed. Results suggest that M. anisopliae isolate 1037 has potential for use in mosquito control programmes.  相似文献   

7.
《Fungal biology》2020,124(8):714-722
We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m−2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.  相似文献   

8.
Aims: To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. Methods and Results: The conidial yields and the shelf‐life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia‐bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf‐life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. Conclusions: The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes. Significance and Impact of the Study: This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice.  相似文献   

9.
The larvae of the pine processionary moth (PPM), Thaumetopoea pityocampa, feed on the needles of pine and cedar. The urticating hairs of older instars pose a threat to human and animal health. Strains of the entomopathogenic fungi, Metarhizium brunneum (V275, ARSEF 4556) and Beauveria bassiana (KTU-24), were assayed against first to fourth instar T. pityocampa using doses ranging from 1?×?105 to 1?×?108 conidia mL?1. The three strains differed slightly in their virulence but caused 100% mortality of all instars at the highest dose. The newly emerged or first instar larvae were extremely susceptible with 100% mortality being achieved 2–4 days post inoculation with V275 at all but the lowest dose. The fourth instar larvae appeared to be less susceptible than earlier instars. There was good horizontal transmission of conidia from treated to un-inoculated larvae. However, mortality was higher in third and fourth instars and where the ratio of inoculated versus untreated larvae was high. This we presume is due to spores being more readily trapped by the urticating hairs found on third and older instar larvae. Injection of the nests offers a simple and environmentally friendly way of controlling the pest with reduced risk to operators.  相似文献   

10.
《Fungal biology》2022,126(10):648-657
We evaluated the virulence of Beauveria bassiana and Metarhizium isolates from soil collected across different vegetation types in Queensland, against chlorantraniliprole-resistant and insecticide-susceptible diamondback moth (DBM) larvae. Host insecticide resistance status had no effect on susceptibility to the pathogens when conidia were topically applied to larvae in the laboratory, and one B. bassiana isolate was significantly more virulent to larvae than the others (seven days after inoculation). The influence of temperature (15, 20, 25 or 30 °C): (i) at the point of host inoculation with conidia and (ii) when the pathogens had already initiated infection and were proliferating in the host haemocoel, was determined experimentally for its influence on virulence, disease progression, and sporulation. Temperature at inoculation had a greater effect on host insect mortality than it did when the fungus was already proliferating in the host haemocoel. The rearing temperature of hosts prior to inoculation had a greater effect on host susceptibility to disease than starvation of the larvae at the time of inoculation. Our results also show that each fungal isolate has its own temperature relations and that these can vary considerably across isolates, and at different points in the pathogen life cycle (germination and cuticular penetration versus growth in the host haemocoel). Temperature also had an idiosyncratic effect, across isolates and across the variables typically used to assess the potential of fungal entomopathogens as biological control agents (time to death, mortality and sporulation rates). This study demonstrates that in addition to pathogenicity and virulence, the temperature relationships of each fungal isolate when infecting insects needs to be taken into account if we are to understand their ecology and use them effectively in pest management.  相似文献   

11.
When last instar laboratory-reared Rhagoletis indifferens were allowed to pupate within non-sterile orchard soil containing incorporated Metarhizium brunneum isolate F52 conidia, a dose-related proportion died from developmental abnormalities and mycosis. When larvae entered soil superficially treated with M. brunneum, over 80% of the pupae died of developmental abnormalities.  相似文献   

12.
《Fungal biology》2014,118(12):990-995
Entomopathogenic fungi are predisposed to ROS induced by heat and UV–A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM.  相似文献   

13.
Selected morphological and physiological characteristics of four Beauveria bassiana (Balsamo) Vuillemin isolates and one Metarhizium anisopliae (Metschnikoff) Sorokin isolate, which are highly pathogenic to Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), were determined. There were significant differences in conidial size, viability, spore production, speed of germination, relative hyphal growth, and temperature sensitivity. Spore viability after incubation for 24h at 20 degrees C ranged from 91.4 to 98.6% for the five isolates tested. Spore production on quarter-strength Sabouraud dextrose agar plus 0.25% (w/v) yeast extract after 10 days incubation at 20 degrees C ranged from 1.6x10(6) to 15.5x10(6)conidia/cm(2). One B. bassiana isolate (ARSEF 1394) produced significantly more conidia than the others. Spore germination was temperature-dependant for both B. bassiana and M. anisopliae. The time required for 50% germination (TG(50)) ranged from 25.0 to 30.9, 14.0 to 16.6, and 14.8 to 18.0h at 15, 22, and 28 degrees C, respectively. Only the M. anisopliae isolate (ARSEF 3540) had significant spore germination at 35 degrees C with a TG(50) of 11.8h. A destructive sampling method was used to measure the relative hyphal growth rate among isolates. Exposure to high temperature (40-50 degrees C) for 10min had a negative effect on conidial viability. The importance of these characteristics in selecting fungal isolates for management of L. lineolaris is discussed.  相似文献   

14.
Bioassays were conducted to determine the susceptibility of egg masses and young larvae of two pine processionary moth species, Thaumetopoea pityocampa and Thaumetopoea wilkinsoni, to two strains (ARSEF4556, V275) of the entomopathogenic fungus Metarhizium brunneum. Mortality of treated eggs by both strains ranged from 96% to 99% but not all of this was caused by M. brunneum since control groups also experienced egg mortality due to saprophytic fungi. Still, larvae hatched in the laboratory from eggs treated with M. brunneum were all killed by this fungus, acquiring M. brunneum conidia, whereas larval mortality was 0% in the control groups. Young larvae of both pine processionary moth species were also highly susceptible to ARSEF4556 and V275 with larval mortality ranging between 94% and 100%, 8 days post-inoculation, with the vast majority of larvae being killed within the first 2–4 days. Larval mortality was dose dependent. Results were consistent across the two pine processionary moth species, showing that the pathogenicity of M. brunneum to both eggs and young larvae might be promising for biological control of these insect pests. The study also showed that non-target parasitoids of pine processionary moth eggs were also susceptible to M. brunneum. Further work is required to understand and reduce the M. brunneum effect on non-target insects.  相似文献   

15.
The pupae of Spodoptera litura (Fab.), (Lepidoptera: Noctuidae), a polyphagous pest affecting common crops in Indian subcontinent, were treated with different concentrations of conidia of four isolates of entomopathogenic fungi belonging to three species, Metarhizium anisopliae var. anisopliae (Metschnikov) Sorokin (ARSEF 7487), Lecanicillium muscarium (Petch) Zare & W Gams (two isolates ARSEF 7037 and ARSEF 6118) and Cordyceps cardinalis Sung & Spatafora (ARSEF 7193) under laboratory conditions. Suspensions (108/ml) of conidia harvested from Sabouraud dextrose agar yeast extract (SDAY) plates resulted in the highest mortality (85.8%) with M. anisopliae and the lowest mortality (57.3%) with C. cardinalis. The values of LC50 and LC90 suggested that M. anisopliae was the most virulent fungal strain followed by L. muscarium (ARSEF 7037). However, C. cardinalis was the least virulent species among the fungi used in the bioassay. In soil bioassays, drenching the soil with conidial suspensions of ARSEF 7487 and ARSEF 7037 (10conidia/g of soil) reduced the adult emergence from pupa by 81.3% and 72.5%, respectively, while premixing the sterile soil with conidia killed lesser number of pupae (62.9% by ARSEF 7487 and 54.6% by ARSEF 7037). Our findings suggest that M. anisopliae (ARSEF 7487) and L. muscarium (ARSEF 7037) are potent entomopathogens and could be developed into biocontrol agents against rice cutworm in IPM programs. Handling editor: Helen Roy  相似文献   

16.
The pathogenicity of 32 fungal isolates from the genera of Beauveria, Verticillium, Paecilomyces, Metarhizium, Mariannaea, and Hirsutella to second-instar tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was tested under laboratory conditions. These isolates originated from various insect hosts and substrates from France, Denmark, Austria, Italy, Turkey, Syria, and the United States. A single exposure concentration (1 x 10(7) conidia/ ml) assay for each isolate was first conducted by immersing the insects in 10 ml of a fungal suspension for 5s. These were followed by concentration-mortality assays on five of the most pathogenic isolates using four test concentrations ranging from 2 x 10(4) to 2 x 10(7) conidia/ml. B. bassiana 726 (Bemisia-passaged GHA strain) was used as a standard for comparison in all of the assays. Among the test isolates, three produced mortality not significantly different from the water control. Mortality ranged from 35 to 98% among the other 29 isolates. The LC50 values of the five most pathogenic isolates ranged from 0.8 to 5.0 x 10(5) conidia/ml. The LT50 values for these isolates ranged from 6.0 to 6.9, 3.1 to 5.1, and 2.5 to 4.0 d for concentrations of 2 x 10(5), 2 x 10(6), and 2 x 10(7) conidia/ml, respectively. Two strains of B. bassiana (ARSEF 1394,5665) and one M anisopliae (ARSEF 3540) were more pathogenic to the nymphs than the standard, having significantly lower LC50 and LT50, values. Our results demonstrated that several genera of entomopathogenic fungi have promise as microbial control agents against L. lineolaris.  相似文献   

17.
The June beetle, Hoplia philanthus Füessly (Coleoptera: Scarabaeidae), has become a widespread and destructive insect pest of lawns, sport turf, pastures, and horticultural crops in Belgium. The virulence of 34 entomopathogenic fungal isolates from the genera Metarhizium, Beauveria, and Paecilomyces to third-instar H. philanthus was tested in bioassays by dipping larvae in 10(7)conidia/ml suspensions. Two isolates of Metarhizium anisopliae (CLO 53 and CLO 54) caused maximally 90% mortality 10 weeks post-inoculation while other isolates only caused mortalities between 10 and 62%. The virulence of M. anisopliae CLO 53 was further tested by exposing H. philanthus larvae to conidial serial concentrations of 10(4)-10(9)conidia/g sandy soil for up to 11 weeks at 15, 20 or 25 degrees C. Mortality was dependant on the fungal concentration, exposure time, and temperature. Eleven weeks after inoculation, the LC50 values for this isolate ranged from 1.3 to 4.0 x 10(6), 1.0 to 3.2 x 10(5), and 2.5 x 10(4) to 10(5)conidia/g soil at 15, 20, and 25 degrees C, respectively. The LT50 values for this isolate ranged from 3.5 to 21.7, 2.4 to 18.7, and 2.9 to 16.1 weeks at concentrations of 10(9) and 10(4)conidia/g soil at 15, 20, and 25 degrees C, respectively. In glasshouse pot experiment with perennial ryegrass (Lolium perenne L.), the isolate CLO 53 caused mortalities of 50 and 88% of H. philanthus larvae 10 weeks after application of 10(4) and 10(6)conidia/cm(2) soil surface, respectively. The present results suggest that the Belgian isolate CLO 53 has excellent potential for biological control of H. philanthus.  相似文献   

18.
Abstract:  The susceptibility of various developmental stages of Tetranychus evansi Baker & Pritchard (eggs, larvae, protonymphs, deutonymphs and adults) to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin and Beauveria bassiana (Balsamo) Vuillemin was evaluated under laboratory conditions. Three concentrations (3.0 × 106, 1.0 × 107 and 1.0 × 108 conidia/ml) of both fungi were used for each stage. The effect of fungal infection on fecundity and egg fertility was also investigated using both fungal species. Deutonymphs that survived the infection and developed into adult females were allowed to oviposit. Adults and deutonymphs were more susceptible to fungal infection than larval and protonymphal stages at all the concentrations. Nevertheless, the concentration level influenced the mortality of the different mite stages. Eggs were also susceptible to fungal infection and mortality was dose-dependent. Fungus-treated female mites laid fewer eggs than the controls but there was no significant difference in egg hatchability between the treatments.  相似文献   

19.
The fungus Fusarium solani (Mart.) Sacc. was discovered as a native entomopathogen of the sugarbeet root maggot, Tetanops myopaeformis (R?der), in the Red River Valley of North Dakota during the 2004 sugarbeet production season. This is the first report of a native pathogen affecting the pupal stage of T. myopaeformis. Forty-four percent of larvae collected from a field site near St. Thomas (Pembina Co.) in northeastern North Dakota during May and June of 2004 were infected with the entomopathogen. The mean LC(50) of F. solani, assessed by multiple-dose bioassays with laboratory-reared pupae, was 1.8x10(6)conidia/ml. After isolation and confirmation of pathogenicity, a pure isolate of the fungus was deposited in the ARS Entomopathogenic Fungal Collection (ARSEF, Ithaca, NY) as ARSEF 7382. Symptoms of F. solani infection included rapid pupal tissue atrophy and failure of adults to emerge. Transverse dissections of infected pupae revealed dense hyphal growth inside puparia, thus suggesting fungal penetration and pathogenicity. Mycelia emerged from pupae after host tissues were depleted. Exposure of older pupae to lethal concentrations caused rapid mortality of developing adults inside puparia. A second, more extensive field survey was conducted during the 2005 cropping season, and F. solani infection was observed in root maggots at most locations, although at lower levels (1-10%) of prevalence than in 2004. Aberrant timing or amounts of rainfall received could have caused asynchrony between pathogen and host during the second year of the experiment.  相似文献   

20.
The stem borer, Busseola fusca (Fuller), is an important pest of maize Zea mays L. and sorghum Sorghum bicolor (L.) in eastern and southern Africa. To control this pest, biological control methods including the use of entomopathogenic fungi are being considered. The pathogenicity of one isolate of Metarhizium anisopliae (Metsch.) Sorok. and one isolate of Beauveria bassiana Bals. (Vuill.) were first tested on different developmental stages of B. fusca including eggs, neonate, 2nd and 3rd-instar larvae. Both fungal isolates were pathogenic to all the stages tested. However, differences in mortality were observed among larvae that hatched from treated egg masses. Experiments were conducted thereafter to test whether B. fusca males could serve as a vector for fungal conidia to contaminate B. fusca females and subsequently eggs and larvae. Results demonstrated that B. fusca males successfully transferred inoculum to females during copulation, which in turn transmitted it to the eggs they laid on maize plants, resulting in the decrease of leaf damages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号