首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:观察肠淋巴液引流对失血性休克大鼠红细胞流变性指标以及血液黏度的作用。方法:Wistar雄性大鼠均分为假休克组、休克组(复制失血性休克模型)、引流组(复制失血性休克模型,自低血压1 h引流休克肠淋巴液)。在低血压3 h或相应时间,经腹主动脉取血,检测红细胞参数、红细胞电泳、红细胞沉降率(ESR)以及血液黏度,计算红细胞聚集指数、红细胞变形指数。结果:与假休克组比较,休克组红细胞数量、红细胞比积(HCT)、血红蛋白(Hb)、平均红细胞血红蛋白浓度(MCHC)、红细胞电泳率与迁移率、红细胞变形指数、全血黏度、全血低切与高切相对黏度和还原黏度显著降低,休克组平均红细胞体积、红细胞电泳时间、ESR、血沉方程K值与校正K值、红细胞聚集性指数、血浆黏度显著升高;引流组MCHC、红细胞电泳率与迁移率、全血黏度、全血低切与高切还原黏度均显著降低,引流组红细胞体积分布宽度(RDW-SD)显著增加。同时,引流组HCT、RDW-SD、红细胞变形指数、全血黏度、全血低切与高切相对黏度显著高于休克组;ESR、血沉方程K值与校正K值、红细胞聚集性指数、血浆黏度显著低于休克组。结论:休克肠淋巴液引流可改善失血性休克大鼠红细胞流变行为,从而改善血液流变性。  相似文献   

2.
Hyperviscosity syndrome (HVS) is characterized by an increase of the blood viscosity by up to seven times the normal blood viscosity, resulting in disturbances to the circulation in the vasculature system. HVS is commonly associated with an increase of large plasma proteins and abnormalities in the properties of red blood cells, such as cell interactions, cell stiffness, and increased hematocrit. Here, we perform a systematic study of the effect of each biophysical factor on the viscosity of blood by employing the dissipative particle dynamic method. Our in silico platform enables manipulation of each parameter in isolation, providing a unique scheme to quantify and accurately investigate the role of each factor in increasing the blood viscosity. To study the effect of these four factors independently, each factor was elevated more than its values for a healthy blood while the other factors remained constant, and viscosity measurement was performed for different hematocrits and flow rates. Although all four factors were found to increase the overall blood viscosity, these increases were highly dependent on the hematocrit and the flow rates imposed. The effect of cell aggregation and cell concentration on blood viscosity were predominantly observed at low shear rates, in contrast to the more magnified role of cell rigidity and plasma viscosity at high shear rates. Additionally, cell-related factors increase the whole blood viscosity at high hematocrits compared with the relative role of plasma-related factors at lower hematocrits. Our results, mapped onto the flow rates and hematocrits along the circulatory system, provide a correlation to underpinning mechanisms for HVS findings in different blood vessels.  相似文献   

3.
Red blood cell (RBC) aggregation is of prime importance in vivo and in vitro for low flow rates. It may be estimated by rheometrical measurements at low shear rates, but these are perturbed by slip and migrational effects which have already been highlighted in the past. These effects lead to a torque decay with time so that the true value of the stress at low shear rates may be greatly underestimated. Elevated aggregation being associated with different diseases, pathological blood samples show more pronounced perturbing effects and a strong time dependency in low shear rate rheometry. To test the dependence of slip and migrational effects on RBC aggregation, and particularly to determine the way in which they depend upon fibrinogen concentration ([Fb]), a home-made measuring system with roughened internal and external walls (170 microns roughness) was used to study low shear rate rheometry for RBC suspensions in PBS buffer containing albumin (at 50 g/l) and fibrinogen at various concentrations. The influences of hematocrit, shear rate, and fibrinogen concentration were investigated. Particular attention was paid to data acquisition at low shear rates (10(-3) s-1 to 3 x 10(-2) s-1). The combined influence of hematocrit and fibrinogen was investigated by adjusting hematocrit to 44 or 57% and fibrinogen concentration ([Fb]) to 3.0-4.5-6.5 g/l. Microscopic observations of the blood samples at rest were performed. They showed that different structures were formed according to fibrinogen concentration. The rheometrical measurements indicated that torque decay with shearing duration was strongly dependent on fibrinogen concentration and on shear rate at fixed hematocrit. Migrational and slip effects were more pronounced as shear rate decreased, fibrinogen concentration was raised, and hematocrit was lowered. The results have been explained on the basis of the expected microstructure of flowing blood in relation to the microscopic observations at rest.  相似文献   

4.
The bulk rheology of close-packed red blood cells in shear flow   总被引:1,自引:0,他引:1  
T W Secomb  S Chien  K M Jan  R Skalak 《Biorheology》1983,20(3):295-309
A theoretical analysis is made of the dynamical behavior and bulk rheology of close-packed red blood cell suspensions subjected to simple shear flow. The model for the polyhedral cell shapes and tank-treading membrane motion developed in the companion paper (1) is used. The flow in the thin lubricating plasma layers between cells is analyzed taking into account the mechanical properties of the membrane at the corner regions of sharp membrane curvature. This leads to predictions for the apparent viscosity as a function of hematocrit and shear rate. Good agreement with experimental results is obtained at moderate and high shear rates (above 20 s-1). At lower shear rates, a rapid rise in apparent viscosity has been found experimentally, and the mechanisms leading to this behavior are examined.  相似文献   

5.
Das B  Johnson PC  Popel AS 《Biorheology》1998,35(1):69-87
Hematocrit distribution and red blood cell aggregation are the major determinants of blood flow in narrow tubes at low flow rates. It has been observed experimentally that in microcirculation the hematocrit distribution is not uniform. This nonuniformity may result from plasma skimming and cell screening effects and also from red cell sedimentation. The goal of the present study is to understand the effect of nonaxisymmetric hematocrit distribution on the flow of human and cat blood in small blood vessels of the microcirculation. Blood vessels are modeled as circular cylindrical tubes. Human blood is described by Quemada's rheological model, in which local viscosity is a function of both the local hematocrit and a structural parameter that is related to the size of red blood cell aggregates. Cat blood is described by Casson's model. Eccentric hematocrit distribution is considered such that the axis of the cylindrical core region of red cell suspension is parallel to the axis of the blood vessel but not coincident. The problem is solved numerically by using finite element method. The calculations predict nonaxisymmetric distribution of velocity and shear stress in the blood vessel and the increase of apparent viscosity with increasing eccentricity of the core.  相似文献   

6.
Magnetic resonance microscopy is used to non-invasively measure the radial velocity distribution in Couette flow of erythrocyte suspensions of varying aggregation behavior at a nominal shear rate of 2.20 s(-1) in a 1 mm gap. Suspensions of red blood cells in albumin-saline, plasma and 1.48% Dextran added plasma at average hematocrits near 0.40 are studied, providing a range of aggregation ability. The spatial distribution of the red blood cell volume fraction, hematocrit, is calculated from the velocity distribution. The hematocrit profiles provide direct measure of the thickness of the aggregation and shear rate dependent red blood cell depletion at the Couette surfaces. At the nominal shear rate studied hematocrit distributions for the red blood cells in plasma show a depletion zone near the inner Couette wall but not the outer wall. The red blood cells in plasma with Dextran show cell depletion regions of approximately 100 mum at both the inner and outer Couette surfaces, with greater depletion at the inner wall, but approach the normal blood hematocrit distribution with a doubling of shear rate due to decreased aggregation. The material response of the blood is spatially dependent with the shear rate and the hematocrit distribution non-uniform across the gap.  相似文献   

7.
The effects of plasma exchange using a low viscosity plasma substitute on blood viscosity and cerebral blood flow were investigated in eight subjects with normal cerebral vasculature. Plasma exchange resulted in significant reductions in plasma viscosity, whole blood viscosity, globulin and fibrinogen concentration without affecting packed cell volume. The reduction in whole blood viscosity was more pronounced at low shear rates suggesting an additional effect on red cell aggregation. Despite the fall in viscosity there was no significant change in cerebral blood flow. The results support the metabolic theory of autoregulation. Although changes in blood viscosity appear not to alter the level of cerebral blood flow under these circumstances, plasma exchange could still be of benefit in the management of acute cerebrovascular disease.  相似文献   

8.
Summary The viscosities of blood from shorthorn sculpin (Myoxocephalus scorpius), longhorn sculpin (Myoxocephalus octodecemspinosus) and winter flounder (Pseudopleuronectes americanus) were compared using a cone-plate viscometer. Both species of sculpin were almost identical with respect to blood and plasma viscosity at the temperatures (0 and 15°C) and shear rates (2.3–90/s) examined. In contrast, the viscosities of winter flounder blood and plasma were considerably greater than those observed in the sculpins. This difference in blood viscosity between the shorthorn sculpin and the winter flounder persisted over the hematocrit range of 0 to 40% red blood cells. The viscosity of the plasma and the interactions between plasma proteins and red blood cells appeared to be the major reasons for the relatively high viscosity of the flounder blood. Although a proportion of the flounder blood viscosity was attributable to fibrinogen, other plasma proteins also appeared to play a significant role. The relatively low blood viscosity of the sculpin species may confer a circulatory advantage during periods of low water temperatures.  相似文献   

9.
The viscoelastic properties of blood are dominated by microstructures formed by red cells. The microstructures are of several types such as irregular aggregates, rouleaux, and layers of aligned cells. The dynamic deformability of the red cells, aggregation tendency, cell concentration, size of confining vessel and rate of flow are determining factors in the microstructure. Viscoelastic properties, viscosity and elasticity, relate to energy loss and storage in flowing blood while relaxation time and Weissenberg number play a role in assessing the importance of the elasticity relative to the viscosity. These effects are shown herein for flow in a large straight cylindrical tube, a small tube, and a porous medium. These cases approximate the geometries of the arterial system: large vessels, small vessels and vessels with many branches and bifurcations. In each case the viscosity, elasticity, relaxation time and Weissenberg number for normal human blood as well as blood with enhanced cell aggregation tendency and diminished cell deformability are given. In the smaller spaces of the microtubes and porous media, the diminished viscosity shows the possible influence of the F?hraeus-Lindqvist effect and at high shear rates, the viscoelasticity of blood shows dilatancy. This is true for normal, aggregation enhanced and hardened cells.  相似文献   

10.
Plasmatic proteins, namely fibrinogen and globulins, play a major role in red blood cell (RBC) aggregation which is accountable for the three-dimensional structure of blood. Consequently, blood rheological properties linked to this structure must be modified when the protein plasma content changes. This paper gives results and related comments on thixotropic properties of RBC suspensions (0.45 hematocrit) in isotonic solutions containing various amount of fibrinogen to which albumin is added. Thixotropic behavior of these RBC suspensions is studied with a low inertia coaxial cylinders viscometer at a shear rate step of Y = 1 s-1. Rheograms are interpreted in term of thixotropy coefficient. The main conclusion is that albumin improves RBC disaggregability of whole blood, resulting probably from a competitive effect between fibrinogen and albumin in the RBC aggregation process.  相似文献   

11.
Red blood cell (RBC) aggregation is known to be of deciding influence on erythrocyte sedimentation-rate (ESR) and on whole blood viscoelastic properties. The rheological behaviour of blood collected from a control-group with normal ESR is compared to the viscoelastic behaviour of blood collected from two groups with high to very high ESR, whose individuals are suffering from chronical polyarthritis and Morbus Bechterew, respectively. The rheological properties are evaluated by means of an oscillating-flow capillary-rheometer where the viscous (eta') and elastic (eta") component of the complex viscosity (eta) is measured at a constant frequency of 2 Hz. Correcting for the varying hematocrit of the different blood samples according to an exponential equation, the viscoelastic data are found to be elevated in the groups with high ESR. For the viscous properties this is only due to the increase of the plasma viscosity. A correction for the plasma viscosity, however, shows that the viscous properties at low shear- rates (2s-1) are significantly reduced, whereas elastic properties in a range of medium shear-rates (10s-1 to 50s-1) are significantly increased (P less than 0.001, t-test of Student). This result is discussed to be due to the high packing density of the RBC in fast sedimenting aggregates. High packing density reduces the effective volume of the RBC but increases the stiffness of the aggregates.  相似文献   

12.
The normal transmyocardial tissue hematocrit distribution (i.e., subepicardial greater than subendocardial) is known to be affected by red blood cell (RBC) aggregation. Prior studies employing the use of infused large macromolecules to increase erythrocyte aggregation are complicated by both increased plasma viscosity and dilution of plasma. Using a new technique to specifically alter the aggregation behavior by covalent attachment of Pluronic F-98 to the surface of the RBC, we have determined the effects of only enhanced aggregation (i.e., Pluronic F-98-coated RBCs) versus enhanced aggregation with increased plasma viscosity (i.e., an addition of 500 kDa dextran) on myocardial tissue hematocrit in rapidly frozen guinea pig hearts. Although both approaches equally increased aggregation, tissue hematocrit profiles differed markedly: 1) when Pluronic F-98-coated cells were used, the normal transmyocardial gradient was abolished, and 2) when dextran was added, the hematocrit remained at subepicardial levels for about one-half the thickness of the myocardium and then rapidly decreased to the control level in the subendocardial layer. Our results indicate that myocardial hematocrit profiles are sensitive to both RBC aggregation and to changes of plasma viscosity associated with increased RBC aggregation. Furthermore, they suggest the need for additional studies to explore the mechanisms affecting RBC distribution in three-dimensional vascular beds.  相似文献   

13.
We studied how the rheological properties of blood influenced capture and rolling adhesion of leukocytes as well as their margination in the bloodstream. When citrated, fluorescently labeled blood was perfused through glass capillaries coated with P-selectin, leukocytes formed numerous rolling attachments. The number of attached leukocytes increased as the hematocrit was increased between 10% and 30% and was essentially constant from 30% to 50%. In EDTA-treated blood, adhesion was absent, and the flux of marginated cells varied little with increasing hematocrit. However, the velocity of marginated leukocytes increased monotonically, whereas the volumetric flow rate was constant, implying that the flow velocity profile became blunted and wall shear rate increased. Thus increasing hematocrit promoted attachment for a given total flow rate, without increasing margination, even though wall shear rate and blood viscosity increased. Blood was diluted to 20% hematocrit with plasma, 40-kDa dextran (to reduce red blood cell aggregation), or 500-kDa dextran (to enhance aggregation). Increasing aggregation correlated with increasing leukocyte adhesion and with more slow-flowing leukocytes near the wall. Thus flowing erythrocytes promote leukocyte adhesion, either by causing margination of leukocytes or by initiating and stabilizing attachments that follow.  相似文献   

14.
T Murata  T W Secomb 《Biorheology》1989,26(2):247-259
The flow properties of aggregating red cell suspensions flowing at low rates through vertical tubes with diameters from 30 microns to 150 microns are analyzed using a theoretical model. Unidirectional flow is assumed, and the distributions of velocity and red cell concentration are assumed to be axisymmetric. A three-layer approximation is used for the distribution of red cells, with a cylindrical central core of aggregated red cells moving with uniform velocity, a cell-free marginal layer near the tube wall, and an annular region located between the core and the marginal layer containing suspended non-aggregating red cells. This suspension is assumed to behave approximately as a Newtonian fluid whose viscosity increases exponentially with red cell concentration. Physical arguments concerning the mechanics of red cell attachment to, and detachment from the aggregated core lead to a kinetic equation for core formation. From this kinetic equation and the equation for conservation of red cell volume flux, a relationship between core radius and pressure gradient is obtained. Then the relative viscosity is calculated as a function of pseudo-shear rate. At low flow rates, it is shown that the relative viscosity decreases with decreasing flow and that the dependence of relative viscosity on shear rates is more pronounced in larger tubes. It is also found that the relative viscosity decreases with increasing aggregation tendency of suspension. These theoretical predictions are in good qualitative and quantitative agreement with experimental results.  相似文献   

15.
Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which exhibits a unique temperature dependence. However, further investigation is still required for understanding the temperature-dependent characteristics of hemorheology that includes RBC aggregation. In the present study, blood samples were examined at 3, 10, 20, 30, and 37 °C. When the temperature decreases, the whole-blood and plasma viscosities increase, whereas the aggregation indices (AI, M, and b) yield contrary results. Since these contradictory results are known to arise from an increase in the plasma viscosity as the temperature decreases, aggregation indices that were corrected for plasma viscosity were examined. The corrected indices showed mixed results with the variation of the temperature. However, the threshold shear rate and the threshold shear stress increased as the temperature decreased, which is a trend that agrees with that of the blood viscosity. As the temperature decreases, RBC aggregates become more resistant to hydrodynamic dispersion and the corresponding threshold shear stress increases as does the blood viscosity. Therefore, the threshold shear stress may help to better clarify the mechanics of RBC aggregation under both physiological and pathological conditions.  相似文献   

16.
Whole blood is a non-Newtonian fluid, which means that its viscosity depends on shear rate. At low shear, blood cells aggregate, which induces a sharp increase in viscosity, whereas at higher shear blood cells disaggregate, deform and align in the direction of flow. Other important determinants of blood viscosity are the haematocrit, the presence of macro-molecules in the medium, temperature and, especially at high shear, the deformability of red blood cells. At the sites of severe atherosclerotic obstructions or at vasospastic locations, when change of vessel diameter is limited, blood viscosity contributes to stenotic resistance thereby jeopardising tissue perfusion. However, blood viscosity plays its most important role in the microcirculation where it contributes significantly to peripheral resistance and may cause sludging in the postcapillary venules. Apart from the direct haemodynamic significance, an increase in blood viscosity at low shear by red blood cell aggregation is also associated with increased thrombotic risk, as has been demonstrated in atrial fibrillation. Furthermore, as increased red blood cell aggregation is a reflection of inflammation, hyperviscosity has been shown to be a marker of inflammatory activity. Thus, because of its potential role in haemodynamics, thrombosis and inflammation, determination of whole blood viscosity could provide useful information for diagnostics and therapy of (cardio)vascular disease.  相似文献   

17.
We studied the effect of temperature on blood rheology in three vertebrate species with different thermoregulation and erythrocyte characteristics. Higher fibrinogen proportion to total plasma protein was found in turtles (20%) than in pigeons (5.6%) and rats (4.2%). Higher plasma viscosity at room temperature than at homeotherm body temperature was observed in rats (1.69 mPa x s at 20 degrees C vs. 1.33 mPa x s at 37 degrees C), pigeons (3.40 mPa x s at 20 degrees C vs. 1.75 mPa x s at 40 degrees C), and turtles (1.74 mPa x s at 20 degrees C vs. 1.32 mPa x s at 37 degrees C). This fact allow us to hypothesize that thermal changes in protein structure may account for an adjustment of the plasma viscosity. Blood viscosity was dependent on shear rate, temperature and hematocrit in the three species. A different behaviour in apparent and relative viscosities between rat and pigeon at environmental temperature was found. Moreover, the blood oxygen transport capacity seems more affected by a reduction of temperature in rats than in pigeons. Both findings indicate a greater influence of temperature on mammalian erythrocyte than on nucleated red cells, possibly as a consequence of differences in thermal sensitivity and mechanical stability between them. A comparison between the three species revealed that apparent blood viscosity measured at homeotherm physiological temperature was linearly related to the hematocrit level of each species. However, when measured at environmental temperature, rat blood showed a higher apparent viscosity than those found in species with non-nucleated red cells, thus indicating a higher impact of temperature decrease on blood viscosity in mammals. This suggest that regional hypothermia caused by cold exposure may affect mammalian blood rheological behaviour in a higher extent than in other vertebrate species having nucleated red cells and, consequently, influencing circulatory function and oxygen transport.  相似文献   

18.
Exposures to microgravity and head-down tilt (HDT) produce similar changes in body fluid. This causes an increase in hematocrit that significantly affects hemorheological values. Lack of physical stimulation under bed rest conditions and the relative immobility of the crew during spaceflight also affects the blood fluidity. A group of six healthy male subjects participated as volunteers, and blood samples were collected 10 days before, on day 2 and day 9, and 2 days after the HDT phase. Blood rheology was quantified by plasma viscometry, red cell aggregability, and red cell deformability. A reduced red cell deformability, an indication of the diminished quality of the red blood cells, was measured under HDT conditions that finally led to the so-called "space flight anemia." Enhanced red cell membrane fragility induced by diminished physical activity and an increase in hemoglobin concentration are responsible for this effect. Plasma viscosity is reduced as a result of diminished plasma proteins. However, despite the reduction in plasma proteins, including fibrinogen, alpha 2-macroglobulin, and immunoglobulin M, red cell aggregation was enhanced, principally because of the increase in hematocrit. Our results of hemorheological alterations under HDT conditions may help to elucidate the formerly documented hematologic changes during spaceflight.  相似文献   

19.
The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.  相似文献   

20.
We investigated the hemorheological, hematological and biochemical parameters in 30 cases of acute lymphocytic leukemia (ALL), 21 cases of acute myelogenous leukemia (AML) and 30 cases of chronic myelogenous leukemia (CML). The parameters studied include whole blood viscosity, plasma viscosity, erythrocyte sedimentation rate (ESR), red cell filterability, hematocrit, platelet count and aggregation, fibrinogen, hemoglobin, leucocyte count, bleeding time and lactate dehydrogenase activity (LDH). In the cases of ALL we observed significant decrease in whole blood viscosity, hemoglobin, hematocrit and platelet count but an increase in plasma viscosity, fibrinogen, bleeding time and LDH activity. In the cases of AML, we observed increase in whole blood viscosity, plasma viscosity, ESR, fibrinogen, leucocyte count, bleeding time and LDH activity but decrease in the hemoglobin, hematocrit and platelet count. In the cases of CML, we observed an increase of whole blood viscosity, plasma viscosity, ESR, fibrinogen elevation but decreases in bleeding time. In all cases, red cell filterability was unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号