首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Epigenetics     
《Epigenetics》2013,8(8):823-840
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

8.
In seven mammalian species, including man, the position and number of nucleoli in pachytene spermatocyte nuclei were studied from electron microscope (EM) nuclear sections or bivalent microspreads. The number and position of the nucleolar organiser regions (NORs) in mitotic and meiotic chromosomes were also analysed, using silver staining techniques and in situ hybridisation protocols. The general organisation of pachytene spermatocyte nucleoli was almost the same, with only minor morphological differences between species. The terminal NORs of Thylamys elegans (Didelphoidea, Marsupialia), Dromiciops gliroides (Microbiotheridae, Marsupialia), Phyllotys osgoodi (Rodentia, Muridae) and man, always gave rise to peripheral nucleoli in the spermatocyte nucleus. In turn, the intercalated NORs from Octodon degus, Ctenomys opimus (Rodentia, Octodontidae) and Chinchilla lanigera (Rodentia, Cavidae), gave rise to central nucleoli. In species with a single nucleolar bivalent, just one nucleolus is formed, while in those with multiple nucleolar bivalents a variable number of nucleoli are formed by association of different nucleolar bivalents or NORs that occupy the same nuclear peripheral space (Phyllotis and man). It can be concluded that the position of each nucleolus within the spermatocyte nucleus is mainly dependent upon: (1) the position of the NOR in the nucleolar bivalent synaptonemal complex (SC), (2) the nuclear pathway of the nucleolar bivalent SC, being both telomeric ends attached to the nuclear envelope, and (3) the association between nucleolar bivalents by means of their NOR-nucleolar domains that occupy the same nuclear space. Thus, the distribution of nucleoli within the nuclear space of spermatocytes is non-random and it is consistent with the existence of a species-specific meiotic nuclear architecture.  相似文献   

9.
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.  相似文献   

10.
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

11.
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础.  相似文献   

12.
《Epigenetics》2013,8(3):468-475
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

13.
International experts gathered at the Mayo Clinic (Rochester MN, USA) on February 27th-28th, 2017 for a meeting entitled ‘Basic and Translational Facets of the Epigenetics of GI Diseases’. This workshop summarized recent advances on the role of epigenetics in the pathobiology of gastrointestinal (GI) diseases. Highlights of the meeting included recent advances on the involvement of different epigenetic mechanisms in malignant and nonmalignant GI disorders and the epigenetic heterogeneity exhibited in these diseases. The translational value of epigenetic drugs, as well as the current and future use of epigenetic changes (i.e., DNA methylation patterns) as biomarkers for early detection tools or disease stratification were also important topics of discussion.  相似文献   

14.
15.
16.
17.
外因遗传学及其重要意义   总被引:1,自引:0,他引:1  
胡楷 《遗传》2002,24(6):734-738
本文综述外因遗传学的提出、发展的各个主要阶段和该学科的确立。基因特性可以从两个层面来进行研究,(1)是遗传物质的传递,(2)是从基因型到表型这个过程。外因遗传学从1942年沃丁顿提出,经1987年霍利迪的发展,到现今在各类生物包括人类中积累了丰富的资料,并能够用化学分子来说明其作用机理。外因遗传学现代的定义为:基因功能的改变,凡未牵涉到DNA的序列,又可通过细胞的有丝或减数分裂而遗传者,称为外因遗传。作者介绍了外因遗传的范围,如:X染色体剂量补偿、基因组印记、分化细胞的基因组重新编程、癌基因、转录的分子调节、RNA介导的基因沉默、组蛋白码、着丝粒的遗传和进化以及外因遗传的进化。此外,还有科学界的反应和评价,包括其在人类生物学和医学方面的重要性和该理论的重大的意义。组蛋白码不同于DNA码,DNA码需要精确拷贝,而且是静止的;而外因遗传就不是如此之僵硬,而具有一定的弹性,因为组蛋白码是决定于其上下文的,可在不同场景下组合成不同的码,它是为其他的蛋白质所读的。遗传需要稳定性,也需要根据内因和外因的变化而有灵活性,DNA码和组蛋白码相辅相成,对复杂的生物是必备的。 The Meaning of Epigenetics HU Kai The Tropical Biology Center,Hainan University,Haikou,Hainan 570028,China Abstract:Epigenetics,the term was introduced by Conrad H.Waddington,in 1942,he said that to compare genetics with epigenetics,the study of the processes by which genotype gives rise to phenotype.In 1987,Robin Holliday redefined epigenetic as “Nuclear inheritance which is not based on differences in DNA sequence”.The author of this paper introduced that in Science,10 August 2001,there was a special collection of review articles focused on the topic of epigenetics.The new “histone code” hypothesis states that the highly modifiable amino termini could carry their own combinatorial codes to help control phenotype,and that part of this code is heritable.And in light of this hypothesis,researchers are approaching further possibilities in human biology and types of cancer and other diseases. Key words:epigenetics; gene expressing  相似文献   

18.
The dynamics of postmitotic reassembly of the nucleolus   总被引:17,自引:0,他引:17  
Mammalian cell nucleoli disassemble at the onset of M-phase and reassemble during telophase. Recent studies showed that partially processed preribosomal RNA (pre-rRNA) is preserved in association with processing components in the perichromosomal regions (PRs) and in particles called nucleolus-derived foci (NDF) during mitosis. Here, the dynamics of nucleolar reassembly were examined for the first time in living cells expressing fusions of the processing-related proteins fibrillarin, nucleolin, or B23 with green fluorescent protein (GFP). During telophase the NDF disappeared with a concomitant appearance of material in the reforming nuclei. Prenucleolar bodies (PNBs) appeared in nuclei in early telophase and gradually disappeared as nucleoli formed, strongly suggesting the transfer of PNB components to newly forming nucleoli. Fluorescence recovery after photobleaching (FRAP) showed that fibrillarin-GFP reassociates with the NDF and PNBs at rapid and similar rates. The reentry of processing complexes into telophase nuclei is suggested by the presence of pre-rRNA sequences in PNBs. Entry of specific proteins into the nucleolus approximately correlated with the timing of processing events. The mitotically preserved processing complexes may be essential for regulating the distribution of components to reassembling daughter cell nucleoli.  相似文献   

19.
表遗传学与肿瘤   总被引:1,自引:0,他引:1  
表遗传学通过对核小体上D NA和组蛋白的结构修饰以及其后导致的染色质结构改变而对局部或整体的基因表达产生重要的调控作用.肿瘤分子生物学研究表明,表遗传学的紊乱与基因的变异一起参与了包括肿瘤细胞生长和分化、细胞周期的调控、D N A修复与重新表达、原癌基因的激活、肿瘤细胞的转移及肿瘤细胞逃避宿主免疫监视等肿瘤发生发展的整个过程.相对于基因变异而言,可逆的表遗传学调控为肿瘤的治疗提供一个全新的方向,而对其分子机制的研究为抗肿瘤药物的设计也提供了一个全新的靶点,从而对肿瘤的临床治疗具有重要的意义.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号