首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the matrix solution, sample form and deposition technique on the quality MALDI-TOF mass spectra was examined and assessed with the aim to improve MALDI-TOF MS performance for the identification of microorganisms and to enable automatic spectra acquisition. It was observed that the use of matrix compounds ferulic and sinapinic acid may result in improved mass spectral features, in terms of signal resolution and S/N ratio, as compared to alpha-cyano-4-hydroxycinnamic acid, which was, on the other hand, found to be the only matrix compound that enabled fully automatic mass spectra acquisition. The robustness of the whole sample preparation procedure was then assessed on a set of 25 strains of four Acinetobacter species. Results showed reproducible detection of subtle mass spectral differences between strains belonging to the same species, although they do not confirm the possibility of reliable strain typing.  相似文献   

2.
The enzyme lysozyme is used as a preservative to prevent late blowing of ripened cheese, caused by Clostridium tyrobutyricum. Since the enzyme is extracted from hen egg white, lysozyme has to be declared on food product labels as a potential allergen. Here, a method is reported that combines immunocapture purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis for the detection of lysozyme in cheese samples. Cheese extracts were treated with magnetic particles coated with a monoclonal antibody directed against lysozyme. After immunocapture purification, lysozyme was detected by MALDI-TOF-MS. The limit of detection of the assay was about 5 mg/kg lysozyme in cheese. The method reliably distinguished between cheese samples which had been produced with and without lysozyme. Thus, the novel assay allows the reliable, sensitive, and specific detection of lysozyme in a food matrix. The assay could be easily adapted to other target peptides and proteins in complex food matrices and, therefore, has a broad application potential, e.g. for the analysis of allergens.  相似文献   

3.
Thermal-assisted partial acid hydrolysis of the carbohydrate moieties of N-glycosylated peptides of horseradish peroxidase (HRP) is used to generate oligosaccharide cleavage ladders. These ladders allow direct reading of components of the oligosaccharides by mass spectrometry. Acid hydrolysis performed with 1.4, 3.1, 4.5, or 6.7M trifluoroacetic acid at 37, 65, or 95 degrees C for 30min to 24h hydrolyzed mainly the oligosaccharide units of glycopeptides with least peptide bond or amino acid side chain hydrolysis. Tryptic N-glycosylated peptides from HRP with molecular weights of 2533, 2612, 3355, 3673, and 5647Da were used as test systems in these experiments. Data showed that the most labile group of oligosaccharides is the fucose (Fuc) and the majority of the end cleavage products are peptides with one or no N-acetylglucosamine (GlcNAc) residue linked to Asparagine (Asn). Additionally, the data agree with previous reports that glycopeptides 3355 and 3673Da carry an oligosaccharide (Xyl)Man3(Fuc)GlcNAc2, glycopeptide 5647Da carries two oligosaccharides (Xyl)Man3(Fuc)GlcNAc2, and glycopeptides 2612 and 2533Da carry (Xyl)Man3GlcNAc2 and (Fuc)GlcNAc, respectively. However, the glycosylation site of the 2612Da peptide at Asn286 is partially occupied. This method is particularly useful in identifying glycopeptides and obtaining monosaccharide compositions of glycopeptides.  相似文献   

4.
Purpose: Crosstalk between Aurora-A kinase and p53 has been proposed. While the genetic amplification of Aurora-A has been observed in many human cancers, how p53 is regulated by Aurora-A remains ambiguous. In this study, Aurora-A-mediated phosphorylation of p53 was analyzed by mass spectrometry in order to identify a new phosphorylation site. Subsequently, the functional consequences of such phosphorylation were examined. Experimental design: In vitro phosphorylation of p53 by Aurora-A was performed and the phosphorylated protein was then digested with trypsin and enriched for phosphopeptides by immobilized metal affinity chromatography. Subsequently, a combination of β-elimination and Michael addition was applied to the phosphopeptides in order to facilitate the identification of phosphorylation sites by MS. The functional consequences of the novel phosphorylation of p53 on the protein–protein interactions, protein stability and transactivation activity were then examined using co-immunoprecipitation, Western blotting and reporter assays. Results: Ser-106 of p53 was identified as a novel site phosphorylated by Aurora-A. A serine-to-alanine mutation at this site was found to attenuate Aurora-A-mediated phosphorylation in vitro. In addition, phosphate-sensitive Phos-tag SDS-PAGE was used to confirm that the Ser-106 of p53 is in vivo phosphorylated by Aurora-A. Finally, co-immunoprecipitation studies suggested that Ser-106 phosphorylation of p53 decreases its interaction with MDM2 and prolongs the half-life of p53. Conclusions: The inhibition of the interaction between p53 and MDM2 by a novel Aurora-A-mediated p53 phosphorylation was identified in this study and this provides important information for further investigations into the interaction between p53 and Aurora-A in terms of cancer biology.  相似文献   

5.
Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.  相似文献   

6.
MALDI-TOF MS is currently becoming the method of choice for rapid identification of bacterial species in routine diagnostics. Yet, this method suffers from the inability to differentiate reliably between some closely related bacterial species including those of the Acinetobacter calcoaceticus–Acinetobacter baumannii (ACB) complex, namely A. baumannii and Acinetobacter nosocomialis. In the present study, we evaluated a protocol which was different from that used in the Bruker Daltonics identification system (MALDI BioTyper) to improve species identification using a taxonomically precisely defined set of 105 strains representing the four validly named species of the ACB complex. The novel protocol is based on the change in matrix composition from alpha-cyano-4-hydroxycinnamic acid (saturated solution in water:acetonitrile:trifluoroacetic acid, 47.5:50:2.5, v/v) to ferulic acid (12.5 mg ml−1 solution in water:acetonitrile:formic acid 50:33:17, v/v), while the other steps of sample processing remain unchanged. Compared to the standard protocol, the novel one extended the range of detected compounds towards higher molecular weight, produced signals with better mass resolution, and allowed the detection of species-specific signals. As a result, differentiation of A. nosocomialis and A. baumannii strains by cluster analysis was improved and 13 A. nosocomialis strains, assigned erroneously or ambiguously by using the standard protocol, were correctly identified.  相似文献   

7.
At present, there is much variability between MALDI-TOF MS methodology for the characterization of bacteria through differences in e.g., sample preparation methods, matrix solutions, organic solvents, acquisition methods and data analysis methods. After evaluation of the existing methods, a standard protocol was developed to generate MALDI-TOF mass spectra obtained from a collection of reference strains belonging to the genera Leuconostoc, Fructobacillus and Lactococcus. Bacterial cells were harvested after 24 h of growth at 28 °C on the media MRS or TSA. Mass spectra were generated, using the CHCA matrix combined with a 50:48:2 acetonitrile:water:trifluoroacetic acid matrix solution, and analyzed by the cell smear method and the cell extract method. After a data preprocessing step, the resulting high quality data set was used for PCA, distance calculation and multi-dimensional scaling. Using these analyses, species-specific information in the MALDI-TOF mass spectra could be demonstrated. As a next step, the spectra, as well as the binary character set derived from these spectra, were successfully used for species identification within the genera Leuconostoc, Fructobacillus, and Lactococcus. Using MALDI-TOF MS identification libraries for Leuconostoc and Fructobacillus strains, 84% of the MALDI-TOF mass spectra were correctly identified at the species level. Similarly, the same analysis strategy within the genus Lactococcus resulted in 94% correct identifications, taking species and subspecies levels into consideration. Finally, two machine learning techniques were evaluated as alternative species identification tools. The two techniques, support vector machines and random forests, resulted in accuracies between 94% and 98% for the identification of Leuconostoc and Fructobacillus species, respectively.  相似文献   

8.
A number of viruses contain lipid membranes, which are in close contact with capsid proteins and/or nucleic acids and have an important role in the viral infection process. In this study membrane lipids of intact viruses have been analysed by MALDI-TOF/MS with a novel methodology avoiding lipid extraction and separation steps. To validate the novel method, a wide screening of viral lipids has been performed analysing highly purified intact bacterial and archaeal viruses displaying different virion architectures. Lipid profiles reported here contain all lipids previously detected by mass spectrometry analyses of virus lipid extracts. Novel details on the membrane lipid composition of selected viruses have also been obtained. In addition we show that this technique allows the study of lipid distribution easily in subviral particles during virus fractionation. The possibility to reliably analyse minute amounts of intact viruses by mass spectrometry opens new perspectives in analytical and functional lipid studies on a wider range of viruses including pathogenic human ones, which are difficult to purify in large amounts.  相似文献   

9.
The barley proteins have been the subject of interests of many research groups dealing with barley grains, malt and beer. The proteins which remain intact after harsh malting conditions influence the quality and flavor of beer. The characteristic feature of the proteins present in malt and beer is their extensive modification with carbohydrates, mainly glucose that comes from the starch degradation during technological processes. The degree of the protein glycation has an effect on the quality of malt and beer and on the properties of the beer foam. A combination of two-dimensional high performance liquid chromatography (2D-HPLC) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS) was used for the analysis of the protein extracts that were reduced, alkylated, and degraded enzymatically without prior protein separation. This so-called "shot-gun" approach enabled us to determine glycation sites in one third of the proteins identified in the study and to propose potential glycation markers for fast and efficient monitoring during malting.  相似文献   

10.
We have measured the efficiencies of two novel pseudo-peptidic carriers and various cell-penetrating peptides (Penetratin, (Arg)9 and the third helix of the homeodomain of Knotted-1) to deliver the same cargo inside cells. The cargo that was studied corresponds to the pseudo-substrate of protein kinase C. Cargo delivery was quantified using a recent method based on isotope labeling and MALDI-TOF MS. Results of cargo delivery were compared to the amounts of free CPP internalized inside cells. The third helix of Knotted gave the best results concerning free CPP cellular uptake. It was also found to be the most efficient carrier. This peptide thus emerges as a new CPP with very promising properties.  相似文献   

11.
The dipeptidyl peptidases (DPP) 8 and 9 belong to the DPP4 activity and/or structure homologues (DASH). Recently, a DPP9-like protein was purified from bovine testes. The aim of the present study was to prove its identity and to investigate the characteristics of this natural enzyme. We report the identification and N-terminal sequence analysis by MALDI-TOF/TOF MS, of the purified bovine enzyme as DPP9. The tryptic peptides after in-gel digestion covered 41% and 38% of the short and full-length variants of bovine DPP9, respectively. Using Asp-N digestion combined with a very recently described mass spectrometric method using DITC glass beads, the N-terminal peptide (XTGALTSERG) was isolated. It corresponds to the N-terminus of the short form of bovine DPP9. There was no evidence for glycosylation of purified bovine DPP9. The purified DPP9 was activated and stabilized by DTT. Bovine DPP9 lost its activity almost completely after alkylation with N-ethylmaleimide. Also alkylation with iodoacetamide inhibited DPP9, albeit only 70%. Other properties of bovine DPP9 are reported, including functional stability and sensitivity towards metal ions. Our results indicate that the short form of DPP9 can be isolated from bovine testes and that it behaves as a stable enzyme suitable for further functional and biochemical characterization as well as for inhibitor screening and characterization.  相似文献   

12.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

13.
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate alpha-helical state to the stable end form called the beta-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the alpha-helical state. The beta-sheet state can be induced at elevated temperature in the presence of detergent. The structural changes of SC3 were monitored by various mass spectrometry techniques. We show that the so-called second loop of SC3 (C39-S72) has a high affinity for Teflon. Binding of this part of SC3 to Teflon was accompanied by the formation of alpha-helical structure and resulted in low solvent accessibility. The solvent-protected region of the second loop extended upon conversion to the beta-sheet state. In contrast, the C-terminal part of SC3 became more exposed to the solvent. The results indicate that the second loop of class I hydrophobins plays a pivotal role in self-assembly at the hydrophilic-hydrophobic interface. Of interest, this loop is much smaller in case of class II hydrophobins, which may explain the differences in their assembly.  相似文献   

14.
The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIβ isoform with the PKA catalytic (C) subunit were analyzed by amide H/2H exchange mass spectrometry to compare solvent accessibility of RIIβ and the C subunit in their free and complexed states. Direct mapping of the RIIβ-C interface revealed important differences between the intersubunit interfaces in the type I and type II holoenzyme complexes. These differences are seen in both the R-subunits as well as the C-subunit. Unlike the type I isoform, the type II isoform complexes require both cAMP-binding domains, and ATP is not obligatory for high affinity interactions with the C-subunit. Surprisingly, the C-subunit mediates distinct, overlapping surfaces of interaction with the two R-isoforms despite a strong homology in sequence and similarity in domain organization. Identification of a remote allosteric site on the C-subunit that is essential for interactions with RII, but not RI subunits, further highlights the considerable diversity in interfaces found in higher order protein complexes mediated by the C-subunit of PKA.  相似文献   

15.
Mandal SM  Migliolo L  Franco OL  Ghosh AK 《Peptides》2011,32(8):1741-1747
Due to recent emergence of fungal pathogens resistant to current antifungal therapies, several studies have been focused on screening of plant peptides to find novel compounds having antifungal activities. Here, a novel antifungal plant peptide, with molecular mass of 1230 Da was purified from fruits of Trapa natans by reverse phase high performance liquid chromatography using 300SB-C18 column and named as Tn-AFP1. Determination of complete amino acid sequences of this peptide by tandem mass spectrometry showed to contain following eleven amino acid residues: LMCTHPLDCSN. Purified Tn-AFP1 showed the inhibition of Candida tropicalis growth in vitro and disrupted the biofilm formation in a concentration dependent manner. It also showed downregulation of MDR1 and ERG11 gene expression in real time-PCR analysis. In silico molecular modeling predicted the structure of Tn-AFP1 as a single coil attached by a unique disulfide bond. Characterization of Tn-AFP1 could contribute in designing novel derivative(s) of this peptide for the development of more effective antimycotic compounds.  相似文献   

16.
Cyclohexanone monooxygenase (CMO) is a member of the flavin monooxygenase superfamily of enzymes that catalyze both nucleophilic and electrophilic reactions involving a common C4a hydroperoxide intermediate. To begin to probe structure-function relationships for these enzymes, we investigated the roles of histidine residues in CMO derived from Acinetobacter NCIB 9871, with particular emphasis on the wholly conserved residue, His163 (H163). CMO activity was readily inactivated by diethyl pyrocarbonate (DEPC), a selective chemical modifier of histidine residues. Each of the seven histidines in CMO was then individually mutated to glutamine and the mutants expressed and purified from Escherichia coli. Only the H59Q mutant failed to express at significant levels. The H96Q enzyme was found to have a greatly reduced flavin adenine dinucleotide (FAD) content, indicative of compromised cofactor retention. The only significant effect on kcat occurred with the H163Q mutant, which exhibited an approximately 10-fold lower turnover of the prototypical substrate, cyclohexanone. This was accompanied by a doubling in the Km [NADPH] compared to the wild-type enzyme, suggesting that the functional decrement in H163Q is probably not solely a reflection of impaired NADPH binding. These data establish a critical role for H163 in CMO catalysis and prompt the hypothesis that this conserved residue plays a similarly important functional role across the flavin monooxygenase family of enzymes.  相似文献   

17.
To test the roles of motif and amino acid sequence in the folding mechanisms of TIM barrel proteins, hydrogen-deuterium exchange was used to explore the structure of the stable folding intermediates for the of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS). Previous studies of the urea denaturation of sIGPS revealed the presence of an intermediate that is highly populated at approximately 4.5 M urea and contains approximately 50% of the secondary structure of the native (N) state. Kinetic studies showed that this apparent equilibrium intermediate is actually comprised of two thermodynamically distinct species, I(a) and I(b). To probe the location of the secondary structure in this pair of stable on-pathway intermediates, the equilibrium unfolding process of sIGPS was monitored by hydrogen-deuterium exchange mass spectrometry. The intact protein and pepsin-digested fragments were studied at various concentrations of urea by electrospray and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. Intact sIGPS strongly protects at least 54 amide protons from hydrogen-deuterium exchange in the intermediate states, demonstrating the presence of stable folded cores. When the protection patterns and the exchange mechanisms for the peptides are considered with the proposed folding mechanism, the results can be interpreted to define the structural boundaries of I(a) and I(b). Comparison of these results with previous hydrogen-deuterium exchange studies on another TIM barrel protein of low sequence identify, alpha-tryptophan synthase (alphaTS), indicates that the thermodynamic states corresponding to the folding intermediates are better conserved than their structures. Although the TIM barrel motif appears to define the basic features of the folding free energy surface, the structures of the partially folded states that appear during the folding reaction depend on the amino acid sequence. Markedly, the good correlation between the hydrogen-deuterium exchange patterns of sIGPS and alphaTS with the locations of hydrophobic clusters defined by isoleucine, leucine, and valine residues suggests that branch aliphatic side-chains play a critical role in defining the structures of the equilibrium intermediates.  相似文献   

18.
We investigated the temperature- and pressure-dependent structure and phase behavior of a solvated oligopeptide, GVG(VPGVG), which serves as a minimalistic elastin-like model system, over a large region of the thermodynamic phase field, ranging from 2 to 120°C and from ambient pressure up to ~10 kbar, applying various spectroscopic (CD, FT-IR) and thermodynamic (DSC, PPC) measurements. We find that this octapeptide behaves as a two-state system which undergoes the well-known inverse-temperature folding transition occurring at T ≈ 36°C, and, in addition, a slow trend reversal at higher temperatures, finally leading to a reentrant unfolding close to the boiling point of water. Furthermore, the pressure-dependence of the folding/unfolding transition was studied to yield a more complete picture of the p, T-stability diagram of the system. A molecular-level picture of these processes, in particular on the role of water for the folding and unfolding events of the peptide, presented with the help of molecular-dynamics simulations, is presented in a companion article in this issue.  相似文献   

19.
The Ca2+-dependent interaction of troponin I (TnI) with actin·tropomyosin (Tm) in muscle thin filaments is a critical step in the regulation of muscle contraction. Previous studies have suggested that, in the absence of Ca2+, TnI interacts with Tm and actin in reconstituted muscle thin filaments, maintaining Tm at the outer domain of actin and blocking myosin-actin interaction. To obtain direct evidence for this Tm-TnI interaction, we performed photochemical crosslinking studies using Tm labeled with 4-maleimidobenzophenone at position 146 or 174 (Tm*146 or Tm*174, respectively), reconstituted with actin and troponin [composed of TnI, troponin T (TnT), and troponin C] or with actin and TnI. After near-UV irradiation, SDS gels of the Tm*146-containing thin filament showed three new high-molecular-weight bands determined to be crosslinked products Tm*146-TnI, Tm*146-troponin C, and Tm*146-TnT using fluorescence-labeled TnI, mass spectrometry, and Western blot analysis. While Tm*146-TnI was produced only in the absence of Ca2+, the production of other crosslinked species did not show Ca2+ dependence. Tm*174 mainly crosslinked to TnT. In the absence of actin, a similar crosslinking pattern was obtained with a much lower yield. A tryptic peptide from Tm*146-TnI with a molecular mass of 2601.2 Da that was not present in the tryptic peptides of Tm*146 or TnI was identified using HPLC and matrix-assisted laser desorption/ionization time-of-flight. This was shown, using absorption and fluorescence spectroscopy, to be the 4-maleimidobenzophenone-labeled peptide from Tm crosslinked to TnI peptide 157-163. These data, which show that a region in the C-terminal domain of TnI interacts with Tm in the absence of Ca2+, support the hypothesis that a TnI-Tm interaction maintains Tm at the outer domain of actin and will help efforts to localize troponin in actin·Tm muscle thin filaments.  相似文献   

20.
Cellular copper overload as found in Wilson's disease may disturb mitochondrial function and integrity. Atp7b−/− mice accumulate copper in the liver and serve as an animal model for this inherited disease. The molecular mechanism of copper toxicity in hepatocytes is poorly understood. Total mitochondrial lipids from liver of wild-type mice were subjected to oxidative stress by the Cu2+/H2O2/ascorbate system. Phosphatidic acid (PA) and phosphatidylhydroxyacetone (PHA) were detected as cardiolipin fragmentation products by thin-layer chromatography combined with MALDI-TOF mass spectrometry in oxidized samples, but not in unperturbed ones. The formation of PA and PHA in copper-treated model membrane correlated well with the decrease of cardiolipin. Mitochondrial lipids from Atp7b−/− mice of different age were analyzed for the presence of PA. While 32-weeks old wild-type (control) and Atp7b−/− mice did not show any PA, there was a steady increase in the amount of this lipid in Atp7b−/− mice in contrast to control with increasing age. Hepatocytes from elder Atp7b−/−mice contained morphologically changed mitochondria unlike cells from wild-type animals of the same age. We concluded that free-radical fragmentation of cardiolipin with the formation of PA is a likely mechanism that damages mitochondria under conditions of oxidative stress due to copper overload. Our findings are relevant for better understanding of molecular mechanisms for liver damage found in Wilson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号