首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 The development of the embryo and endosperm has been investigated in an intraspecific Tulipa gesneriana cross and in the incongruent cross T. gesneriana ×T. agenensis at intervals of 10 days, from 12 to 82 days after pollination (DAP). In both tulip crosses, the zygote gives rise to an apparently undifferentiated cell mass, the proembryonal cell mass, on which a suspensor then develops. Subsequently, a globular embryo is formed on top of the suspensor. This embryo finally elongates, giving rise to a spindle-shaped embryo. The cellular endosperm fills the whole embryo sac in mature seeds, except for a region immediately around the embryo. In both crosses, aberrant developments were found. In the intraspecific T. gesneriana cross, the pollen tubes did not open in a number of ovules. In other ovules, the pollen tubes seemed to have opened, but an embryo or endosperm was not found or only endosperm was observed. In the cross T. gesneriana ×T. agenensis, fewer pollen tubes entered the ovules than in the intraspecific T. gesneriana cross. The ovules with embryo and endosperm formation of the incongruent interspecific cross showed, in general, retarded development in comparison with the intraspecific T. gesneriana cross. The first globular embryos and spindle-shaped embryos were found at the later fixation dates and the relatively lower number of spindle-shaped embryos at 82 DAP had a shorter average length. The number of ovules with deformations in embryo and/or endosperm development was also higher in the cross T. gesneriana × T. agenensis in comparison with the intraspecific T. gesneriana cross. Between 87% and 100% of the ovules with embryo and endosperm development showed normal development in the intraspecific T. gesneriana cross, while in the incongruent interspecific cross, from 22 DAP, between 17% and 56% of the ovules showed normal development. Of those ovules with aberrations in embryo and/or endosperm formation, about 80% had a deformed endosperm, of which more than 50% also contained a deformed embryo. Embryos of the incongruent cross might be saved by the application of embryo rescue techniques. Received: 10 December 1996 / Revision accepted: 23 April 1997  相似文献   

2.
RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccard's similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.  相似文献   

3.

Embryo rescue technique is widely utilized to save developing embryo from abortion in interspecific hybridization of plants. In Brassica species, success of an embryo rescue depends on the age of embryo, developmental stage of embryo, and media composition. In this study, ten crosses were conducted between diploid oilseed species B. rapa × tetraploid B. napus and B. rapa × tetraploid B. juncea along with their reciprocal crosses. The immature embryos from parents and crosses were cultured at 14 d after pollination in MS and ½ MS medium without any growth regulators for direct embryogenesis. Embryos were found at different stages of development during isolation, from globular to cotyledonary, indicating that rate of embryo development depends on genotype. Embryos isolated at the cotyledonary stage showed the highest regeneration percentage (av. 83.29%) and required the lowest time to regenerate (5.8 d) compared with another type of embryo, torpedo stage, cultured. Embryo rescued in ½ MS media accounted for 10–51%, 4.0–61%, 6.0–21%, and 5.0–43% greater shoot length, root length, number of leaves, and days to flowering, respectively, in different cross combinations compared with full-strength MS media. The results indicated that the rate of regeneration from embryo is higher in ½ MS media compared with full-strength MS media. Percent regeneration from the cultured embryos differed significantly in different cross combinations. Days required for regeneration from embryos, length of siliqua, and the number of ovules per siliqua accounted for high heterosis and broad sense heritability. The findings of this experiment would be useful in developing cost-effective embryo rescue protocol and desired interspecific hybrids through embryo rescue in Brassica species.

  相似文献   

4.
Summary Interspecific crosses were made between seven Lilium species, viz. L. candidum, L. concolor, L. dauricum, L. henryi, L. longiflorum, L. nepalense and L. rubellum. A complete diallel cross was carried out between these seven species, including self- and intraspecific pollinations using three pollination methods: normal pollination on the stigma, pollination on the ovary after cutting the style, and pollination on the stigma with the aid of mentor (non-functional, compatible) pollen. Embryo rescue, starting 35 days after pollination, was applied to all interspecific combinations. The percentage of successful crosses was about 2.8% after normal pollination, 5.4% after cut-style pollination and 3.8% with the mentor pollen technique. Crosses with L. nepalense were exceptional in that embryos died during the embryo culture phase. Seventeen cross combinations (including 4 reciprocals) yielded 62 embryo plantlets from 839 interspecific pollinations.  相似文献   

5.
Summary Intergeneric hybrids were produced between Diplotaxis siettiana and Brassica campestris through embryo rescue. The hybrids were completely pollen sterile and backcrosses with pollen of B. campestris did not yield any seeds. Induction of colchiploidy restored pollen fertility and backcross pollinations yielded viable seeds. Cytological details of the hybrid, amphidiploid and backcross progenies were studied. Both pollen-sterile and pollen-fertile plants have been obtained in backcross 2 progeny. This hybrid (D. siettiana x B. campestris) was used as a bridge cross to transfer the cytoplasm of D. Siettiana to two other incompatible cultivars of BrassicaB. juncea and B. napus. Pollinations of the amphidiploid (D. siettiana x B. campestris, 2n = 36) with pollen of B. juncea/B. napus readily produced seeds without embryo rescue. These hybrids were grown to flowering and their cytological details were studied. Seeds have been produced from backcross pollinations of both these hybrids with the pollen of the respective cultivars. The results clearly show the feasibility of producing alloplasmic lines in all the three oilseed brassicas.  相似文献   

6.
Brassica species are particularly receptive to gene transformation techniques. There now exists canola genotypes with transgenic herbicide resistance for glyphosate, imidazolinone, sulfonylurea and glufosinate herbicides. The main concern of introducing such herbicide resistance into commercial agriculture is the introgression of the engineered gene to related weed species. The potential of gene transfer between canola (Brassica napus and B. campestris) and related weed species was determined by hand pollination under controlled greenhouse conditions. Canola was used as both male and female parent in crosses to the related weed species collected in the Inland Northwest region of the United States. Weed species used included: field mustard (B. rapa), wild mustard (S. arvensis) and black mustard (B. nigra). Biological and cytological aspects necessary for successful hybrid seed production were investigated including: pollen germination on the stigma; pollen tube growth down the style; attraction of pollen tubes to the ovule; ovule fertilisation; embryo and endosperm developmental stages. Pollen germination was observed in all 25 hybrid combinations. Pollen tubes were found in the ovary of over 80% of combinations. About 30% of the hybrid combinations developed to the heart stage of embryo development or further. In an additional study involving transgenic glufosinate herbicide resistant B. napus and field mustard it was found that hybrids occurred with relatively high frequency, hybrids exhibited glufosinate herbicide resistance and a small proportion of hybrids produced self fertile seeds. These fertile plants were found to backcross to either canola or weed parent.  相似文献   

7.
Summary Fertilization and early embryo and endosperm development were examined in Phaseolus vulgaris x P. acutifolius, P. vulgaris x P. lunatus crosses and their reciprocals. The number and length of pollen tubes were not different between selfings and interspecific crosses. Fertilization was completed in all matings and the time of fertilization was maternally dependent which may reflect the degree of maturation of embryo sacs at pollination. A large difference between reciprocal crosses was found in the time of endosperm and embryo division in relation to the time of fertilization. When P. vulgaris was the female parent and P. acutifolius the male parent, endosperm division occurred at the same time as in P. vulgaris upon selfing, while in P. vulgaris x P. lunatus crosses the time of endosperm division was intermediate as compared with the two parents. The time lapse between fertilization and endosperm and embryo division in P. acutifolius x P. vulgaris crosses was longer than in either parent upon selfing. In P. lunatus x P. vulgaris crosses, endosperm division occurred in only 7–12% of the ovules at 72 hours after pollination. Embryo development in these ovules was limited to the four cell stage although the endosperm was at the free nuclei stage. The severe delay in embryo and endosperm divisions may be the major cause of early pod abscission in P. lunatus x P. vulgaris crosses.Technical paper No. 4929 of the Oregon Agricultural Experiment Station. Research was supported by the Oregon Agricultural Experiment Station, the Research Council of Oregon State University (NIH Biomedical Research Support Grand RR07079) and the Processor Research Council of Oregon. A.R. is supported by an African Graduate Fellowship from the African-American Institute.  相似文献   

8.
Before novel transgenic plant genotypes are grown outside containment facilities and evaluated under field conditions, it is necessary to complete a risk assessment to consider the possible consequences of that release. An important aspect of risk assessment is to consider the likelihood and consequences of the transgene being transferred by cross-pollination to related species, including other crops, weeds and ruderal populations. The purpose of this report is to review the literature to assess the ease with whichBrassica napus can hybridize with related species. The evidence for hybridization is considered at three levels: a) by open pollination, b) by hand pollination and c) by the use ofin vitro ovule and embryo rescue techniques; and also examines the fertility and vigour of the F1, F2 and backcross generations. Four species are reported to hybridize withB. napus by open pollination:B. rapa andB. juncea using fully fertile parents; andB. adpressa andR. raphanistrum using a male-sterileB. napus parent. Seventeen species are reported to form hybrids (including the four species above) withB. napus when pollination is carried out manually. At least 12 of these species were unable to form F2 progeny, and eight were unable to produce progeny when the F1 was backcrossed to one of the parental species. Many factors will influence the success of hybridization under field conditions, including: distance between the parents, synchrony of flowering, method of pollen spread, specific parental genotypes used, direction of the cross and the environmental conditions. Even where there is a possibility of hybridization betweenB. napus and a related species growing in the vicinity of a release, poor vigour and high sterility in the hybrids will generally mean that hybrids and their progeny will not survive in either an agricultural or natural habitat.  相似文献   

9.
Summary Interspecific hybridization between Vigna unguiculata and V. vexillata always failed: no seed was obtained in both crossing directions. Two different barriers to crossability were found: a pre-zygotic barrier and a post-zygotic one. Many abnormalities were observed in pollen-tube development, which reduced the percentage of fertilization to 18–30%. Differences in the percentage of fertilization were detected between the two accessions of V. vexillata involved in the interspecific crosses. The development of the interspecific embryo was analyzed and the embryo and endosperm nuclei always degenerated 5–8 days after pollination. The growth of the embryo stopped at a globular stage, which is too early for excision and in vitro culturing.  相似文献   

10.
Summary Attempts were made to obtain intergeneric hybrids between Diplotaxis siifolia, a wild species, and cultivars of Brassica (B. campestris, B. juncea, and B. napus). The crosses showed unilateral incompatibility. When the wild species was used as female parent, pollen germination and pollen tube growth were normal, but hybrid seeds aborted due to post-fertilization barriers. Reciprocal crosses (cultivars as female parent) showed strong pre-fertilization barriers; although pollen grains showed germination, pollen tubes failed to enter the stigma. Hybrids were realized in two of the crosses, D. siifolia x B. juncea and D. siifolia x B. napus, through ovary culture. The hybrids were multiplied in vitro by multiplication of axillary shoots, or somatic embryogenesis. Detailed studies were carried out on the hybrid D. siifolia x B. juncea. F1 hybrids had shrivelled anthers and were pollen sterile. Amphiploids of this hybrid showed 60% pollen fertility and produced seeds upon self-pollination as well as backcross pollination with the pollen of B. juncea.  相似文献   

11.
Summary To investigate the mechanisms of seed failure in intraspecific and interspecific crosses of Solanum two diploid, S. commersonii and Group Phureja, and one tetraploid species, S. acaule, species were crossed and the seeds were analyzed for embryo and endosperm development. Many seeds of certain crosses observed seven days after pollinations were found to contain abnormal embryos and degenerating endosperms. In some cases seeds contained an embryo with no endosperm, or an endosperm with no embryo. Other interspecific crosses which were predicted to fail actually produced seeds with normally developed embryos and endosperms. To further characterize the intra- and interspecific embryos and endosperms the nuclear DNA was measured. There are several ways to explain the ploidy levels of embryos and endosperms among the crosses, the occurrence of unreduced gametes in some cases and genomic instability in other cases. The latter resulted in chromosome loss at meiotic and mitotic divisions. Genomic balance in interspecific seeds is critical to both embryo and endosperm development.Scientific Journal Series Article No. 14636 of the Minnesota Experiment Station  相似文献   

12.
In angiosperms, interspecific crosses often display hybrid incompatibilities that are manifested as under‐proliferation or over‐proliferation of endosperm. Recent analyses using crosses between Arabidopsis thaliana and its related species with different ploidy levels have shown that interspecific hybridization causes delayed developmental transition and increased mitotic activity in the endosperm. In this study, we investigated endosperm development in interspecific crosses between diploid Oryza species. In a cross between female O. sativa and male O. punctata, we found that the hybrid endosperm was reduced in size and this cross was associated with precocious developmental transition. By contrast, the cross between O. sativa and O. longistaminata generated enlarged hybrid endosperm at the mid‐point of seed development and this cross was associated with delayed developmental transition. Subsequently, the hybrid endosperm displayed a shriveled appearance at the seed maturation stage. We found that the accumulation of storage products and the expression patterns of several marker genes were also altered in the hybrid endosperm. By contrast, the rate of syncytial mitotic nuclear divisions was not significantly affected. The gene OsMADS87 showed a maternal origin‐specific expression pattern in rice endosperm, in contrast to its Arabidopsis homologue PHERES1, which shows paternal origin‐specific expression. OsMADS87 expression was decreased or increased depending on the type of developmental transition change in the hybrid rice endosperm. Our results indicate that one of the interspecies hybridization barriers in Oryza endosperm is mediated by precocious or delayed developmental alterations and de‐regulation of OsMADS87, without change to the rate of syncytial mitotic nuclear division in the hybrid endosperm.  相似文献   

13.
An efficient method for the regeneration of zygote-derived plants via ovule culture is desirable for overcoming postzygotic cross incompatibility as well as for the development of certain methods for genetic manipulation. High-frequency plantlet regeneration from ovules of Italian ryegrass (Lolium multiflorum Lam.) and a hybrid Italian/perennial ryegrass excised 1 to 4 days post pollination was obtained by culture on endosperm-derived feeder cells. Ovules excised 3 or 4 days after anthesis and grown on feeder cells generally regenerated about twice as frequently as ovules grown directly on nutrient medium. In one of the genotypes tested, ovules excised 1, 2 and 3 days post pollination developed into plantlets at percentages of 38.1, 52.0 and 52.8, respectively, using the feeder-cell system.Abbreviations EM endosperm multiplications - OC ovule culture - R regeneration - 2,4-d 2,4-dichlorophenoxyacetic acid  相似文献   

14.
The in vitro response of ovules obtained after pollination of cotton flowers with pollen from Abelmoschus esculentus was studied. For this, 492 cotton flowers from five G. hirsutum varieties, four G. barbadense varieties and 10 F1 interspecific hybrids, were pollinated with pollen from A. esculentus and 5,069 ovules were cultured in vitro. From the cultured ovules, 69 embryos were isolated and 16 of them grew into plants. However, only three of them survived after transplantation. Finally, one plant which originated from the interspecific cross (B403 × Acala Sindos) × A. esculentus reached maturity. The mature plant (Pa0) had no morphological traits from A. esculentus. On the contrary, traits from both cotton species were observed. The flowcytometric analysis of the Pa0 plant indicated that it was hypoaneuploid. Root tip chromosome counts of its offsprings revealed a progressive chromosome increase from the Pa1 to Pa4 generation. Plants with 52 chromosomes or hypoaneuploids with a lower level of chromosomes (46–51) could be isolated from the Pa4 generation. These plants exhibited morphological traits from both cotton species and they were fertile. No signs of A. esculentus morphological characteristics were observed in these plants. It was concluded that aneuploid partial interspecific cotton plants could be produced after pollination of cotton interspecific hybrids with pollen from A. esculentus and application of an in-ovule embryo rescue technique.  相似文献   

15.
The time rate and mechanism of chromosome elimination in Hordeum hybrids   总被引:1,自引:1,他引:0  
Seed development at 20±1° C in continuous light was studied during the first 5 days after pollination in diploid Hordeum vulgare, diploid H. bulbosum and the cross, H. vulgare x H. bulbosum, where H. bulbosum chromosomes were eliminated. Developing seeds were fixed and stained at known intervals after pollination and the embryo sac contents dissected out for cytological examination. — In all cases, the pattern of development was similar to that previously described for the Triticeae. After intraspecific pollination, the rate of endosperm and embryo development was significantly faster in H. vulgare than in H. bulbosum. In hybrid tissues, the rate was intermediate, but often much nearer to that of H. vulgare at first. Elimination of H. bulbosum chromosomes occurred only during endosperm and embryo mitoses. Usually, 0–3 chromosomes were lost at any one division but up to 7 were lost at some. Elimination, which occurred as early as zygotic anaphase, was nearly or quite complete in all dividing cells in both embryo and endosperm after 5 days. The mean number of chromosomes lost per nucleus per nuclear cycle was low at first but rose rapidly and stayed high for about a day in each tissue before falling quickly. The rate of elimination in each tissue was maximal when that tissue first synthesized significant amounts of new cytoplasm (day 2 after pollination in the endosperm and day 3 in the embryo). At mitosis, chromosomes being eliminated differed from others only in failing to congress at metaphase or to reach a pole at anaphase or both. — It is noted that in several widely different examples where either haploids are produced when only hybrids are expected, or where chromosomes of one species are preferentially eliminated from hybrid cells, nucleolar activity was suppressed in chromosomes of the genome which was selectively or preferentially eliminated. Consequently, it is suggested that chromosome elimination in Hordeum hybrids may be caused by a disturbed control of protein metablism in hybrid seeds and perhaps H. bulbosum chromosomes are selectively eliminated because they are less efficient than H. vulgare chromosomes at forming normal attachments to spindle protein.  相似文献   

16.
Summary Intergeneric hybrids between Moricandia arvensis (C3–C4 intermediate species) and Brassica A and B genome species (B. campestris and B. nigra) were produced via ovary culture. When M. arvensis was used as a female parent, the hybrid embryo yield (0.25–0.45 embryo per pollination) was similar between two genomes, regardless of the male parent. The reciprocal hybrid using B. campestris as a female was also obtained, although yield of embryo was lower (0.02 embryo per pollination). On the other hand, no hybrids were obtained without the in vitro technique. As most hybrid embryos could not develop normal shoots, plants were regenerated by inducing shoots on the cultured hypocotyl. The hybrid nature of the regenerated plant was confirmed morphologically and cytogenetically. A certain amount of bivalents (2.52-2.71) in the hybrids indicated the existence of partial chromosome homology between two genera. The present results indicate that ovary culture is an effective technique for overcoming the crossing barrier between M. arvensis and Brassica cultivated species.  相似文献   

17.
Oryza meyerlana Baill (GG genome) Is a precious germplaem in the tertiary gene pool of cultivated rice (AA genome), and possesses important traits such as resistance and tolerance to biotic and abiotic stress. However, interspecific crossability barrier, a critical bottleneck restricting genes transfer from O. meyeriana to cultivars has led to no hybrids through conventional reproduction. Therefore, the reasons undedying incrossability were investigated in the present report. The results showed that: (ⅰ) at 3-7 d after pollination (DAP), many hybdd embryos degenerated at the earlier globular-shaped stage, and could not develop into the later pear-shaped stage. Meanwhile, free endosperm nuclei started to degenerate at 1 DAP, and cellular endosperm could not form st 3 DAP, leading to nutrition starvation for young embryo development; (ⅱ) st 11-13 DAP, almost all hybrid ovaries aborted. Even though 72.22% of hybrid young embryos were produced in the interspecific hybridization between O. sativa and O. meyeriana, young embryos were not able to further develop into hybrid plantlets via culturing in vitro. The main reason for the incrossability was hybrid embryo inviability, presenting as embryo development stagnation and degeneration since 3 DAP. Some possible approaches to overcome the crossability banders in the interspecific hybridization between O. sativa and O. meyeriana are discussed.  相似文献   

18.
Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape genetic material into this population. Markers were transferred to the backcross generation with frequencies ranging from 26% to 91%. Almost all of the markers (30/33) were transferred in a frequency not significantly different from 50%. Analysis of the pairwise segregation of markers revealed that 23 markers could be assigned to six linkage groups, most probably reflecting six B. napus C-chromosomes. The presence of backcross plants with recombinant genotypes suggests that complex genetic processes can take place during interspecific hybridisation and backcrossing in these Brassica species. The implications of our results for the possible choice of integration sites of transgenes in oilseed rape are discussed.  相似文献   

19.
Forty-two genotypes representing oilseed Brassica species were analyzed for the level of genetic diversity and molecular identity using Random Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeat (ISSR) and 5'-Anchored Simple Sequence Repeat (ASSR) markers. DNA profiles revealed high degree of interspecific polymorphism, while the level was considerably low within a species, particularly in B. juncea. The UPGMA clusters clearly delineated genotypes of the respective Brassica species. Comparison of cophenetic matrices indicated a high degree of correspondence between dendrograms generated by different marker systems. A minimum of 10 random primers (approximately 105 bands) were required for the RAPD profiles to generate the expected cluster. Comparatively less number of primers was required to do the same in case of ISSR (4 primers) and ASSR (3 primers). The principal component analysis revealed similar genetic relationship among the genotypes as in cluster analysis. Although none of the DNA profiles could individually identify all the B. juncea genotypes, a combined DNA profile consisting 125 markers from the informative primers of all the three DNA marker systems could do the same. A positive correlation was found among the marker utility parameters (calculated for individual primers of different marker systems) such as marker index (MI), resolving power (Rp) and discrimination coefficient (D) with the number of genotypes identified by each primer with a few exceptions. Single plant analysis for a set of five B. juncea varieties revealed absence of intra-varietal heterogeneity in case of ASSR profiles, thereby suggesting its utility in varietal identification and differentiation.  相似文献   

20.
小报春与岩生报春种间杂交亲和性研究   总被引:1,自引:0,他引:1  
以报春花属报春花组的小报春(Primula forbesii)和指叶报春组的岩生报春(Primula saxatilis)为亲本,对种间杂交的结实性及花粉管行为进行了观察。结果表明:小报春与岩生报春种间杂交表现为不亲和,正反交组合正常结实率为0,但正交、反交组合花粉在柱头表面的萌发和花粉管伸长过程有明显差异,小报春花粉授粉4h后可以在岩生报春柱头表面萌发,但花粉管伸长的速度明显比对照组[岩生报春(P)×岩生报春(T)、岩生报春(T)×岩生报春(P)]慢,并且花粉管生长弯曲,授粉192h后花粉管仍未到达子房;岩生报春的花粉可以在小报春柱头上正常萌发,授粉48h后花粉管到达子房;4个对照授粉组合均分别于24h(短花柱为母本)、48h(长花柱为母本)时完成受精过程。研究表明,岩生报春×小报春杂交存在受精前障碍,小报春×岩生报春杂交亲和性较好,并可通过幼胚拯救的方法获得组间杂种后代;花柱长度可能是影响种间杂交结实能力的因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号