首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intracellular concentration of the cosubstrate 5-phosphoribosyl 1-pyrophosphate (PRPP) may be rate-limiting for the reactions, catalysed by hypoxanthine phosphoribosyltransferase, by which mammalian cells convert the purine bases hypoxanthine, xanthine, and guanine to their ribonucleotide derivatives. The rate of conversion of [14C]hypoxanthine to radioactive phosphorylated products by intact human diploid skin fibroblasts was measured in the presence of compounds previously reported to alter PRPP concentration in a variety of cell types Methylene blue, previously reported to increase PRPP concentration in a variety of cultured cells including skin fibroblasts, increased product formation from hypoxanthine, with maximum effect following 60 min preincubation with 0.4 mM. Incubation with adenine, orotic acid, allopurinol, or adenosine has been shown to decrease PRPP concentration. Of these compounds, only adenine and adenosine decreased the rate of ribonucleotide synthesis from hypoxanthine in cultured skin fibroblasts. This decrease probably resulted from decreased PRPP synthesis rather than increased PRPP utilization. The reaction products isolated from cells following incubation with either [14C]adenine or [14C]adenosine included adenosine monophosphate and adenosine diphosphate, both inhibitors of PRPP synthetase.  相似文献   

2.
The intracellular concentration of the cosubstrate 5-phosphoribosyl 1-pyrophosphate (PRPP) may be rate-limiting for the reactions, catalysed by hypoxanthine phosphoribosyltransferase, by which mammalian cells convert the purine bases hypoxanthine, xanthine, and guanine to their ribonucleotide derivatives. The rate of conversion of [14C]hypoxanthine to radioactive phosphorylated products by intact human diploid skin fibroblasts was measured in the presence of compounds previously reported to alter PRPP concentration in a variety of cell types Methylene blue, previously reported to increase PRPP concentration in a variety of cultured cells including skin fibroblasts, increased product formation from hypoxanthine, with maximum effect following 60 min preincubation with 0.4 mM. Incubation with adenine, orotic acid, allopurinol, or adenosine has been shown to decrease PRPP concentration. Of these compounds, only adenine and adenosine decreased the rate of ribonucleotide synthesis from hypoxanthine in cultured skin fibroblasts. This decrease probably resulted from decreased PRPP synthesis rather than increased PRPP utilization. The reaction products isolated from cells following incubation with either [14C]adenine or [14C]adenosine included adenosine monophosphate and adenosine diphosphate, both inhibitors of PRPP synthetase.  相似文献   

3.
Cells resistant to pyrazofurin and 6-azauridine have been selected from a simian virus 40-transformed Syrian hamster line and from a Chinese hamster lung line. By increasing the concentrations of inhibitors in several steps, mutant cells from both lines have been obtained which resist high concentrations (1 to 5 mM) of the two inhibitors separately or together. Orotidine-5'-phosphate decarboxylase (EC 4.1.1.23), the sixth and last enzyme in UMP biosynthesis, is inhibited by the nucleoside monophosphates derived from pyrazofurin or 6-azauridine. The activity of this enzyme is increased in each resistant cell line tested. Furthermore, there is a parallel increase in each case in the activity of the fifth enzyme of the pathway, orotate phosphoribosyltransferase (EC 2.4.2.10), which is not inhibited by pyrazofurin or 6-azauridine monophosphates, and the amount of increase is up to 67 times the level found in wild type cells. In contrast, the activities of the first three enzymes of UMP biosynthesis remain essentially unchanged in the mutants. Resistant Chinese hamster cells remain sensitive to 5-fluorouridine; this indicates that uridine kinase, the enzyme necessary to convert 6-azauridine to the monophosphate, is still functional.  相似文献   

4.
R S Gupta  B Singh 《Mutation research》1983,113(5):441-454
Stable mutants exhibiting high degree of resistance (100-1000-fold) to various nucleoside analogs viz, toyocamycin, tubercidin, 6-methyl mercaptopurine riboside (6-MeMPR) and pyrazofurin, are obtained at similar frequency (congruent to 1 X 10(-4] in CHO cells. The mutants resistant to any of the above analogs exhibit similar degree of cross-resistance to the other three nucleoside analogs, and all of the mutants examined contained no measurable activity of the purine salvage pathway enzyme adenosine kinase (AK) which converts these analogs to their phosphorylated derivatives. These results indicate that very similar mutants are selected using any of these analogs. The recovery of AK- mutants in CHO cells is not affected by cell density (up to at least 5 X 10(5) cells per 100-mm diameter dish) and after treatment with mutagen(s) maximum mutagenic effect is observed after 7-8 days, which then remains unchanged for the next several days. Treatment of CHO cells with a number of mutagenic agents e.g. ethyl methanesulfonate, ICR170, ultraviolet light, and benzo[a]pyrene, led to a nearly linear concentration-dependent increase in the frequency of the AK- mutants in cultures. The mutagenic response of the AK locus to these agents compared favorably with that of the HGPRT locus (6-thioguanine resistance) within the same experiments. These results show that the selection system for AK- mutants provides an additional valuable genetic marker for quantitative mutagenesis studies in CHO cells.  相似文献   

5.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

6.
The structural requirements for inhibition of bacterial RNA polymerase and rabbit liver formyltetrahydrofolate synthetase activity by a series of purine nucleoside analogs related to 6-chloro-8-aza-9-cyclopentylpurine (689) were investigated. To achieve an inhibitory effect, preincubation of the enzyme preparations with the purine analogs, prior to assay of enzyme activity, was required. The greatest inhibition was produced by analogs containing all three alterations of the purine nucleoside structure: the 6-halo, 8-aza, and 9-cyclopentyl groups. It is suggested that 689 inhibits the activity of enzymes involved in nucleic acid synthesis by a site-directed alkylation.  相似文献   

7.
Orotidine 5'-monophosphate (OMP) decarboxylase from Plasmodium falciparum (PfODCase, EC 4.1.1.23) has been overexpressed, purified, subjected to kinetic and biochemical analysis, and crystallized. The native enzyme is a homodimer with a subunit molecular mass of 38 kDa. The saturation curve for OMP as a substrate conformed to Michaelis-Menten kinetics with K m = 350 +/- 60 nM and V max = 2.70 +/- 0.10 micromol/min/mg protein. Inhibition patterns for nucleoside 5'-monophosphate analogues were linear competitive with respect to OMP with a decreasing potency of inhibition of PfODCase in the order: pyrazofurin 5'-monophosphate ( K i = 3.6 +/- 0.7 nM) > xanthosine 5'-monophosphate (XMP, K i = 4.4 +/- 0.7 nM) > 6-azauridine 5'-monophosphate (AzaUMP, K i = 12 +/- 3 nM) > allopurinol-3-riboside 5'-monophosphate ( K i = 240 +/- 20 nM). XMP is an approximately 150-fold more potent inhibitor of PfODCase compared with the human enzyme. The structure of PfODCase was solved in the absence of ligand and displays a classic TIM-barrel fold characteristic of the enzyme. Both the phosphate-binding loop and the betaalpha5-loop have conformational flexibility, which may be associated with substrate capture and product release along the reaction pathway.  相似文献   

8.
This study was carried out to evaluate the possible role of adenosine uptake and metabolism in mediating the inhibitory actions of this nucleoside on spontaneous mouse oocyte maturation. Uridine blocked 3H‐adenosine uptake by oocyte–cumulus cell complexes (OCCs) and cumulus cell–enclosed oocytes (CEOs) by 82–85%, whereas uptake by denuded oocytes (DOs) was suppressed by 97%. Uridine had no effect on germinal vesicle breakdown (GVB) in CEOs when meiotic arrest was maintained with hypoxanthine or hypoxanthine plus adenosine but reversed the combined inhibitory action of these purines in DOs. Five of six adenosine analogs that bind to purinoceptors demonstrated meiosis‐arresting activity but not in relation to their relative affinities for inhibitory or stimulatory adenosine receptors and only at high concentrations. Moreover, in DOs, uridine reversed the inhibitory effect of 2‐chloroadenosine and 5′‐N‐ethylcarboxamidoadenosine, two receptor agonists that are poor substrates for adenosine‐metabolizing enzymes. Results of experiments with adenosine kinase inhibitors showed that methylmercaptopurine riboside (MMPR) and tubercidin, but not 5′‐amino‐5′‐deoxyadenosine, reversed meiotic arrest maintained by hypoxanthine ± adenosine, but this required an additional inhibitory action on de novo purine synthesis. Inhibition of de novo purine synthesis alone was not sufficient because azaserine failed to reverse meiotic arrest. MMPR was a very potent meiosis‐inducing agent, completely reversing meiotic arrest in CEOs and DOs in the presence of a variety of meiotic inhibitors. The adenosine deaminase inhibitor deoxycoformycin had opposite effects on oocyte maturation depending on the presence or absence of adenosine: the inhibitory action of hypoxanthine alone was bolstered, but the meiosis‐arresting action of adenosine was reversed. These data therefore indicate that at low adenosine concentrations phosphorylation predominates, but at higher adenosine concentrations deaminated products contribute to the meiotic inhibition. This idea was borne out by the ability of inosine to mimic the synergistic interaction of adenosine with hypoxanthine. The action of adenosine is not due to deamination to inosine and conversion to nucleotides through the hypoxanthine salvage pathway because adenosine‐mediated inhibition was not compromised in oocytes from mutant mice unable to salvage hypoxanthine. Mol. Reprod. Dev. 53:208–221, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Defects in X-linked phosphoribosylpyrophosphate synthetase 1 (PRPS1) manifest as follows: (1) PRS-I enzyme "superactivity" (gain-of-function mutations affecting allosteric regions); (2) PRS-I overexpression (which may be linked to miRNA mutation); (3) severe PRS-I deficiency/Arts syndrome (missense mutations producing loss-of-function); (4) moderate PRS-I deficiency/Charcot-Marie-Tooth disease-5 (less severe loss-of-function mutations); and (5) mild PRS-I deficiency/Deafness-2 (mutations producing slight destabilization). Similar to Lesch-Nyhan disease, PRPS1-related disorders arise from phosphoribosyl-pyrophosphate (PRPP)-dependent nucleotide "depletion" of purine nucleotides (e.g., ATP, GTP). S-adenosylmethionine (SAMe) appears to partially alleviate purine depletion via a PRPP-independent path. Synthesis of pyrimidine nucleotides is PRPP dependent, with uridine monophosphate synthase deficiency producing pyrimidine nucleotide depletion. But pyrimidine salvage from uridine does not require PRPP, and this nucleoside is transported freely to pyrimidine-depleted tissues. Regulation of nicotinamide nucleotides is less clear; synthesis from pyridine nucleobases is PRPP dependent. Nucleotide "depletion" contrasts with nucleotide "toxicity," exemplified by the purine disorders adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies or by pyrimidine nucleotidase deficiency. These are characterized by the accumulation of one or more abnormal nucleotides such as succinyl- or deoxy-nucleotides or their metabolites, which interrupt other nucleotide or related pathways or are toxic to specific cell types. Theoretically, purine toxicity disorders would not be ameliorated by SAMe therapy, and this was confirmed for one adenylosuccinate lyase-deficient child. Nucleotide defects may also be seen as an aspect of mitochondrial disease, with SAMe-based mitochondrial therapy perhaps meriting further investigation.  相似文献   

10.
Hematopoiesis and the inosine modification in transfer RNA   总被引:1,自引:0,他引:1  
Human promyelocytic leukemia (HL-60) cells were used to begin to evaluate the role in hematopoiesis of inosine biosynthesis in the tRNA anticodon wobble position; a reaction involving the enzymatic insertion of performed hypoxanthine. Dimethyl sulfoxide (DMSO) and hypoxanthine were found to induce the differentiation of HL-60 cells in a synergistic manner, and the induced differentiation was independent of changes in the purine catabolic enzymes adenosine deaminase and purine nucleoside phosphorylase. The short-term exposure of HL-60 cells to DMSO plus hypoxanthine resulted in enhanced leucine incorporation, and a model is presented showing how the inosine modification reaction in tRNA may be involved. A means by which hypoxanthine insertion into tRNA may modulate the synthesis of regulatory proteins (e.g., lymphokines and cell surface receptors) is also outlined.  相似文献   

11.
Munagala N  Wang CC 《Biochemistry》2002,41(33):10382-10389
Trichomonas vaginalis is a parasitic protozoan and the causative agent of trichomoniasis. Its primary purine salvage system, consisting of a purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase, presents potential targets for designing selective inhibitors as antitrichomonial drugs because of lack of de novo synthesis of purine nucleotides in this organism. cDNA encoding T. vaginalis PNP was isolated by complementation of an Escherichia coli strain deficient in PNP and expressed, and the recombinant enzyme was purified to apparent homogeneity. It bears only 28% sequence identity with that of human PNP but 57% identity with the E. coli enzyme. Gel filtration showed the enzyme in a hexameric form, similar to the bacterial PNPs. Steady-state kinetic analysis of T. vaginalis PNP-catalyzed reactions gave K(m)'s of 31.5, 59.7, and 6.1 microM for inosine, guanosine, and adenosine in the nucleosidase reaction and 45.6, 35.9, and 12.3 microM for hypoxanthine, guanine, and adenine in the direction of nucleoside synthesis. This substrate specificity appears to be similar to that of bacterial PNPs. The catalytic efficiency of this enzyme with adenine as substrate is 58-fold higher than that with either hypoxanthine or guanine, representing a distinct disparity with the mammalian PNPs, which have negligible activity with either adenine or adenosine. The kinetic mechanism of T. vaginalis PNP-catalyzed reactions, determined by product inhibition and equilibrium isotope exchange, was by random binding of substrates (purine base and ribose 1-phosphate) with ordered release of the purine nucleoside first, followed by inorganic phosphate. Formycin A, an analogue of adenosine known as an inhibitor of E. coli PNP without any effect on mammalian PNPs, was shown to inhibit T. vaginalis PNP with a K(is) of 2.3 microM by competing with adenosine. T. vaginalis PNP thus belongs to the family of bacterial PNPs and constitutes a target for antitrichomonial chemotherapy.  相似文献   

12.
Enzymes of Purine Metabolism in Mycoplasma mycoides subsp. mycoides   总被引:8,自引:8,他引:0       下载免费PDF全文
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides were proposed previously from studies of its usage of radioactive purines and pyrimidines. To interpret more fully the pattern of purine usage, we have assayed cell-free extracts of this organism for several enzymes associated with the salvage synthesis of purine nucleotides. M. mycoides possessed phosphoribosyltransferases for adenine, guanine, and hypoxanthine, purine nucleoside phosphorylase, GMP reductase, GMP kinase, adenylosuccinate synthetase, and adenylosuccinate lyase. Purine nucleoside kinase and adenosine deaminase were not detected. Examination of kinetic properties and regulation of some of the above enzymes revealed differences between M. mycoides and Escherichia coli. Most notable of these were the greater susceptibility of the enzymes from M. mycoides to inhibition by nucleotides and the more widespread involvement of GMP as an inhibitor. Observations on enzyme activities in vitro allow an adequate explanation of the capacity of guanine to provide M. mycoides with its full requirement for purine nucleotides.  相似文献   

13.
In exponentially growing cultures of the extreme halophile Halobacterium halobium and the moderate halophile Haloferax volcanii, growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-α-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium. The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis. H. volcanii was more sensitive than H. halobium, and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium. Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.  相似文献   

14.
Inosine (I) when acetylated with acetic anhydride in the presence of acetyl chloride in acetic acid solution (the so called "acid acetylation"), affords an acetylated nucleoside III (75%) along with cleavage products of the nucleoside (hypoxanthine, 19%). The reaction of I with acetyl chloride (7 days) results in the formation of hypoxanthine (95%) and triacetylribofuranosyl chloride (IV) isolated in the form of tetraacetylribofuranose (47%). The acetylated purine nucleoside affords a similar result by reaction with acetyl chloride or acetyl bromide. 2'-Deoxyuridine gives a diacetyl derivative (80%) by reaction with acetyl bromide. On treatment with acetyl bromide, the nucleoside bond of purine nucleosides is quantitatively cleavaged (4 h, 20 degrees C) with the formation of tri-O-acetyl-D-ribofuranosyl bromide (X). The halogenose X affords pure beta-anomers, namely, 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose (75%), the triacetyl derivatives of 5-methyluridine (XVIIa; 75%, referred to guanosine), 6-azauridine (XVIII; 71%), and 5-fluorouridine (XIXa; 75%).  相似文献   

15.
The metabolism of the purine analogs 3-deazaguanine and 3-deazaguanosine was studied in cultured human cells using radiolabeled tracers, individual enzyme assays, and mutant cell lines. The toxicity of each drug appeared to require conversion to the 5' nucleotide. The base was converted to the nucleotide by hypoxanthine guanine phosphoribosyl transferase. The conversion of the nucleoside to the nucleotide was catalyzed by an unidentified kinase. Purine nucleoside 3-deazaguanosine-5'-monophosphate was converted to its corresponding di- and triphosphate by guanylate kinase. Both the base and the nucleoside were incorporated into DNA but not RNA.  相似文献   

16.
The effects of adenine and (or) guanosine concentration on the accumulation of inosine, xanthosine, adenosine and succino-adenosine were studied with various purine auxotrophs of Bacillus subtilis K strain. Genetical derepression of the common pathway enzymes resulted in increase in the accumulation of inosine, xanthosine and adenosine. Co-operative repression system of a common pathway enzyme, succino-AMP lyase with respect to adenine and guanosine, was confirmed under the condition of the accumulation test. From these and the relating other studies it was concluded that the synthesis of AMP was regulated mainly by the inhibition of PRPP amidotransferase by AMP and secondly by the repression of the common pathway enzymes by adenine and guanosine, that the synthesis of GMP was regulated mainly by the inhibition and repression of IMP dehydrogenase by guanine derivatives and that GMP was synthesized in preference to AMP at the branch point, IMP.  相似文献   

17.
The culture conditions under which hypoxanthine maintains a two-cell block in preimplantation mouse embryos were assessed. Hypoxanthine prevented embryo development past the two-cell stage at concentrations as low as 30 nM, and this inhibitory activity required the presence of D-glucose. The action of hypoxanthine plus D-glucose was reversed by glutamine and higher lactate. D-mannose substituted for D-glucose in supporting the inhibitory action of hypoxanthine, but L-glucose, D-fructose, and 2-deoxyglucose were much less effective. Other purine derivatives such as inosine and adenosine, but not xanthosine or uric acid, also blocked development at the two-cell stage at a concentration of 30 microM, and guanosine was inhibitory at higher doses. Assays of hypoxanthine phosphoribosyltransferase (HPRT) activity in lysates of four-cell embryos determined that the drugs 6-mercapto-9-(tetrahydro-2-furyl)-purine (MPTF) and 6-mercaptopurine (6-MP), but not 6-azauridine (6-AzaU), prevented salvage of hypoxanthine. In addition, MPTF and 6-MP produced a significant two-cell block, which did not depend upon the presence of hypoxanthine or D-glucose; whereas 6-AzaU was without effect. When embryos were cultured 2 days in the presence or absence of D-glucose, hypoxanthine salvage was significantly reduced in lysates of four-cell embryos exposed to D-glucose. D-glucose had no effect when added directly to the assay mixture. These data demonstrate that the ability of hypoxanthine to block embryo development at the two-cell stage depends on the presence of D-glucose or other glycolyzable sugars and suggest that inhibition of the purine salvage pathway promotes the two-cell block.  相似文献   

18.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

19.
Purine salvage pathways in cultured endothelial cells of macrovascular (pig aorta) and microvascular (guinea pig coronary system) origin were investigated by measuring the incorporation of radioactive purine bases (adenine or hypoxanthine) or nucleosides (adenosine or inosine) into purine nucleotides. These precursors were used at initial extracellular concentrations of 0.1, 5, and 500 microM. In both types of endothelial cells, purine nucleotide synthesis occurred with all four substrates. Aortic endothelial cells salvaged adenine best among purines and nucleosides when applied at 0.1 microM. At 5 and 500 microM, adenosine was the best precursor. In contrast, microvascular endothelial cells from the coronary system used adenosine most efficiently at all concentrations studied. The synthetic capacity of salvage pathways was greater than that of the de novo pathway. As measured using radioactive formate or glycine, de novo synthesis of purine nucleotides was barely detectable in aortic endothelial cells, whereas it readily occurred in coronary endothelial cells. Purine de novo synthesis in coronary endothelial cells was inhibited by physiological concentrations of purine bases and nucleosides, and by ribose or isoproterenol. The isoproterenol-induced inhibition was prevented by the beta-adrenergic receptor antagonist propranolol. The end product of purine catabolism in aortic endothelial cells was found to be hypoxanthine, whereas coronary endothelial cells degraded hypoxanthine further to xanthine and uric acid, a reaction catalyzed by the enzyme xanthine dehydrogenase.  相似文献   

20.
Abstract

The allylation of hypoxanthine and methylation of 1-allyl-4-thiouracil has been investigated. New synthetic routes to [1,4]-thiazi-no[4,3,2 gh] purine derivatives from 7-allyl-6-thiohypoxantnine and 8-azaxanthine nucleoside analogs from uracil were also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号