首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Membrane vesicles obtained from the basal lateral membranes of the rat intestinal epithelium were used to study the pathways for neutral amino acid transport.In the absence of sodium there was a stereospecific uptake ofl-alanine which exhibited saturation kinetics (K m 0.73mm andV max 5.3 nmol/mg min at 22°C). The activation energy for this process was 8.1 kcal/mole between 5 and 25°C. Preloading the vesicles with alanine increased the unidirectional influx of alanine into the vesicle. Competition experiments indicated that the affinity of the sodium-independent transport system was glutamine > threonine > alanine > phenylalanine > valine > methionine > glycine > histidine > proline, N-MeAIB. These are the characteristics of the classical L transport system.External sodium increased the rate of the stereospecificl-alanine uptake. The Na-dependent flux had aK m of 0.04mm and aV max of 0.26 nmol/mg min at 22°, and an activation energy of 9.1 kcal/mole between 5 and 25°C. Competition experiments suggest the existence of three separate pathways for alanine transport in the presence of sodium. A major pathway is shared by all other amino acids tested (i.e., threonine, glutamine, methionine, phenylalanine, valine, proline and N-MeAIB). This resembles the classical A system. A second pathway is unavailable to either phenylalanine or N-MeAIB; this is reminiscent of the classical ASC system; and the third is a novel pathway which is shared by N-MeAIB but not phenylalanine.The sodium-independent and the sodium-dependent transport ofl-alanine was blocked by PCMBS and significantly inhibited by DTP and NEM. It is concluded that the sodium-independent system (the L-like system) accounts for the efflux of neutral amino acids from the epithelium to the blood during the absorption of amino acids from the gut, and that the sodium-dependent transport processes may play an important role in the supply of amino acids to the epithelium in the absence of amino acids from the gut lumen.  相似文献   

2.
Protein preparations from seeds and seedlings (cotyledons) of rape (Brassica napus subsp. napus [L.] DC.) catalyzed the transfer of sinapic acid from 1-Osinapoyl--glucose to malate in the formation of O-s-inapoylmalate. The enzyme involved, 1-O-sinapoyl--glucose: l-malate O-sinapoyltransferase (SMT; EC 2.3.1), catalyzes the key step in the overall conversion of the seed constituent sinapine (O-sinapoylcholine) to the accumulating O-sinapoylmalate by way of the intermediate 1-O-sinapoyl--glucose. The present paper describes this phenomenon focussing on SMT activity.Abbreviations Sin-Glc 1-O-sinapoyl--glucose - Sin-Mal O-sinapoylmalate - SMT 1-O-sinapoyl--glucose: l-malate sinapoyltransferase (EC 2.3.1) This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ontario Ministry of Agriculture and Food.  相似文献   

3.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

4.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

5.
Pseudomonas aeruginosa PA01 was found to utilise both thed- andl-isomers of -alanine and also -alanine as sole sources of carbon and energy for growth. Enzymological studies of wild-type cultures and comparison with mutants deficient in growth upon one or more isomers of alanine led to the following conclusions: (i) utilisation ofd-alanine involved its direct oxidation by an inducible, membrane-bound, cytochrome-linked dehydrogenase; (ii) utilisation ofl-alanine required its conversion to the directly oxidisabled-form by a soluble racemase; (iii) utilisation of -alanine, likel-alanine, involves both the racemase andd-alanine dehydrogenase enzymes, but in addition must involve other enzymes the identity, of which is still speculative; (iv)P. aeruginosa, likeEscherichia coli, appears to take upd-alanine andl-alanine by means of two specific permeases.Abbreviation DCPIP 2,6-dichlorophenol-indophenol  相似文献   

6.
Summary Brush-border membrane vesicles were isolated from the intestine and kidney of the winter flounder,Pseudopleuronectes americanus, and the transport ofd-glucose,l-alanine and sodium was examined by a rapid filtration technique.d-glucose,l-alanine, and sodium entered the same osmotically reactive space suggesting that uptake into vesicles represents transport across rather than binding to the membrane. d-glucose andl-alanine uptake by intestinal and renal brush-border membrane vesicles was stimulated by sodium as compared to potassium or choline. In the presence of a sodium chloride gradient, overshooting uptake was observed indicating a transient intravesicular accumulation ofd-glucose andl-alanine. The sodium-dependentd-glucose uptake was inhibited by phlorizin andd-galactose while the transport ofl-alanine was inhibited byl-phenylalanine. The sodium-dependent transport ofd-glucose andl-alanine was affected by the electrical potential difference across the vesicle membrane; the addition of valinomycin in the presence of an inwardly directed potassium chloride gradient inhibited sodium-dependent solute uptake, whereas replacing chloride or gluconate with more permeant anions, such as SCN, stimulated uptake. Similar results were obtained with intestinal and renal membranes; they document the presence of sodium/d-glucose and sodium/l-alanine cotransport systems in the brush-border membrane of intestine and kidney.Sodium uptake into brush border membrane vesicles from the flounder intestine and kidney was saturable (tracer replacement) and trans-stimulated (tracer coupling), indicating transport via facilitated diffusion systems. Additionally, sodium uptake was only slightly affected by superimposing diffusion potentials demonstrating that the majority of sodium transport was by electroneutral coupled processes. In both the intestinal and kidney brush-border membrane vesicles sodium uptake was inhibited by an inwardly directed proton gradient suggesting the presence of a sodium/proton exchange mechanism. In intestinal, but not in renal membrane preparations, sodium uptake was stimulated by chloride. Chloride stimulation was abolished after preincubation with furosemide indicating the presence of an additional coupled sodium-chloride transport in the intestinal brush-border membranes.The experiments were carried out at the Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, USAAddress effective February 1, 1980: Albert Einstein College of Medicine, Department of Physiology, 1300 Morris Park Avenue, Bronx, New York 10461, USA  相似文献   

7.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

8.
Summary We have investigated transport of the amino acid glutamine across the surface membranes of prophase-arrestedXenopus laevis oocytes. Glutamine accumulation was linear with time for 30 min; it was stereospecific with aK m of 0.12±0.02mm andV max of 0.92±0.17 pmol/oocyte · min forl-glutamine. Transport ofl-glutamine was Na+-dependent, the cation not being replaceable with Li+, K+, choline, tris(hydroxymethyl)-aminomethane (Tris), tetramethylammonium (TMA) or N-methyld-glucamine NMDG); external Cl appeared to be necessary for full activation of Na+-dependent glutamine transport. Two external Na+ may be required for the transport of one glutamine molecule.l-glutamine transport (at 50 m glutamine) was inhibited by the presence of other amino acids:l-alanine,d-alanine,l-leucine,l-asparagine andl-arginine (about 60% inhibition at 1mm);l-histidine,l-valine and glycine (25 to 40% inhibition at 1mm);l-serine,l-lysine,l-phenylalanine andl-glutamate (45 to 55% inhibition at 10mm). N-methylaminoisobutyric acid (meAIB) had no effect at 10mm, but 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) inhibited Na+/glutamine transport by about 50% at 10mm.l-glutamine was a competitive inhibitor of the Na+-dependent transport ofl-alanine,d-alanine andl-arginine; this evidence is consistent with the existence of a single system transporting all four amino acids. Glutamine uptake in oocytes appears to be catalyzed by a transport system distinct from the cotransport Systems A, ASC, N and Gly, although it resembles System B0,+.  相似文献   

9.
Summary A process for l-phenylalanine production was studied using a tyrosine auxotrophic regulatory mutant of Escherichia coli, resistant to both -2-thienyl-dl-alanine and p-fluoro-dl-phenylalanine. Fermentations were carried out in a 30-1 fermentor with intermittent feeding of glucose plus phosphate. The mutant accumulated l-phenylalanine in the fermentation broth up to 15 g/l at pH 7.0 and 33°C. Column chromatography on a strong cation exchanger was employed as the most effective step in the purification of l-phenyl-alanine from the broth. This step brought about 4-fold concentration of the product with 96% recovery.  相似文献   

10.
Agaricus bisporus glutamine synthetase, a key enzyme in nitrogen metabolism, was purified to apparent homogeneity. The native enzyme appeared to be a GS-II type enzyme. It has a molecular weight of 325 kDa and consists of eight 46-kDa subunits. Its pI was found at 4.9. Optimal activity was found at 30°C. The enzyme had low thermostability. Stability declined rapidly at temperatures above 20°C. The enzyme exhibits a K m for glutamate, ammonium, and ATP of 22mm, 0.16mm and 1.25mm respectively in the biosynthetic reaction, with optimal activity at pH 7. The enzyme is slightly inhibited by 10mm concentrations of l-alanine, l-histidine, l-tryptophan, anthranilic acid, and 5-AMP and was strongly inhibited by methionine sulfoximine and phosphinothricine. For the transferase reaction K i-values were 890 m and 240 m for methionine sulfoximine and phosphinothricine respectively. For the biosynthetic reaction K i was 17 m for both methionine sulfoximine and phosphinothricine.  相似文献   

11.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

12.
Summary Mitochondrial -glycerol phosphate dehydrogenase is an important enzyme, but it is difficult to extract and purify. We have measured the activity of this enzyme in single type IIA skeletal muscle fibres under initial rate conditions by microdensitometry of the formazan reaction product.The Km (1.6mm) for the substrate (l--glycerol phosphate) was lower than reported for the extracted enzyme. Further, at low substrate concentrations (3mm), the enzyme was allosterically activated by free Ca2+ concentrations of 1 m or greater, and half-maximal stimulation occurred at 0.3 m free Ca2+. In the absence of Ca2+, there was negative cooperativity of substrate binding with a Hill constant of 0.57, but no cooperativity occurred in the presence of calcium. ATP (10mm) inhibited enzyme activity in the presence of Ca2+ but not in its absence.  相似文献   

13.
Summary The pig kidney cell line LLC-PK1 cultured on a collagen coated membrane filter formed a continuous sheet of oriented asymmetrical epithelial cells joined by occluding junctions. A transepithelial electrical potential (PD) and short-circuit current (SCC) were dependent on the presence of Na and sugar in the apical bathing solution. In the presence of 5.5mm d-glucose, a PD of 2.8 mV, apical surface negative, a SCC of 13 A cm–2 and transepithelial resistance of 211 ohm·cm2 were recorded. The SCC was promptly reduced by the addition of phlorizin to the apical bath but unaffected when placed in the basolateral bath. The effect on SCC of various sugars was compared by the concentrations required for half-maximal SCC: 0.13mm -methyl-d-glucoside, 0.28mm d-glucose, 0.65mm -methyl-d-glucoside, 0.77mm 6-deoxy-d-glucose, 4.8mm d-galactose, and 29mm 3-O-methyl-glucose. When [Na] was reduced, the concentration ofd-glucose required for half-maximal SCC increased. Isotopically labeled3H and14Cd-glucose were used to simultaneously determine bidirectional fluxes; a resultant net apical-to-basolateral transport was present and abolished by phlorizin. The transported isotope cochromatographed with labeledd-glucose, indicating negligible metabolism of transported glucose. The pig kidney cell line, LLC-PK1, provides a cell culture model for the investigation of mechanisms of transepithelial glucose transport.  相似文献   

14.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

15.
Summary A membrane extract enriched with the Na+-dependentd-glucose transport system was obtained by differential cholate solubilization of rat renal brush border membranes in the presence of 120mm Na+ ions. Sodium ions were essential in stabilizing the transport system during cholate treatment. This membrane extract was further purified with respect to its Na+-coupledd-glucose transport activity and protein content by the use of asolectin-equilibrated hydroxylapatite. The reconstituted proteoliposomes prepared from this purified fraction showed a transient accumulation ofd-glucose in response to a Na+ gradient. The observed rate of Na+-coupledd-glucose uptake by the proteoliposomes represented about a sevenfold increase as compared to that of the reconstituted system derived from an initial 1.2% cholate extract of the membranes. Other Na+-coupled transport systems such asl-alanine, -ketoglutarate and phosphate were not detected in these reconstituted proteoliposomes.  相似文献   

16.
Isolated membrane fractions of Chlorella fusca 211-8b obtained by french-press treatment and sonication catalyzed the oxidation of l-cysteine to l-cystine. The pH-optimum of this reaction was determined to be around 8–8.5 and a stoichiometry of 4 SH-groups oxidized for one O2 consumed was obtained. This thiol-oxidation system was specific for D-and l-cysteine; Dl-homocysteine and cysteamine were oxidized at about half the rate whereas all other thiols tested including glutathione, mercaptoethanol, mercaptopropionic acid and dithioerythritol were not oxidized by these membrane fractions. The apparent Km for l-cysteine was determined as 3.3 mmol l-1. Rates of 200 mol cysteine oxidized mg-1 chlorophyll h-1 were normally obtained. Extremely high rates of oxygen uptake were measured using l-cysteine methyl ester and l-cysteine ethyl ester. This thioloxidation system was not inhibited by mitochondrial electron-transport inhibitors such as rotenone or antimycin A, nor by the chloroplast electron-transport inhibitors 2,5-dibromothymochinone and 2,4-dinitrophenylether of iodonitrothymol. The cysteine oxidation catalyzed by C. fusca membranes was inhibited, however, by salicylhydroxamic acid, o-phenanthrolin, N,N-disalicyliden-1,3-diaminopropane 5,5-disulfonic acid, ethylenediaminetetraacetic acid, high KCN levels and by the buffers, N-[2-hydroxyl-1,1-bis(hydroxymethyl) ethyl] glycine and phosphate. This cysteine-oxidation system seems to function as a counterpart of thioredoxin-mediated light activation of enzymes, allowing reduced thiol groups to be oxidized again by O2 (dark inactivation).Abbreviation DTNB 5,5-dithio-bis(-2-nitrobenzoic acid). Ellmann reagent  相似文献   

17.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

18.
The addition of l-glutamine, -alanine or l-glutamic acid strongly stimulates somatic embryo formation in carrot, not only in the number of somatic embryos formed but also with respect to their development. The effects of the amino acids on somatic embryogenesis were stronger than that of ammonium ion. In particular, l-glutamine strongly stimulated the development of somatic embryos. To clarify the different effects of amino acids and ammonium ion, the activity of glutamine synthetase (GS; EC 6.3.1.2), a key enzyme involved in nitrogen assimilation, was measured. Its activity decreased during the later stages of embryo development.Abbreviations -Ala -alanine - Glu l-glutamic acid - Gln l-glutamine - 2,4-D 2, 4-dichlorophenoxyacetic acid - -GHA l-glutamic acid -monohydroxamate - GS glutamine synthetase - MS medium Murashige & Skoog (1962) medium - MS-NH4 medium MS medium without NH4NO3 - MS+NH4 medium MS-NH4 medium with 10 mM NH4Cl - MS+ala medium MS-NH4 medium with 10 mM -alanine - MS+GLU medium MS-NH4 medium with 10 mM l-glutamic acid - MS+GLN medium MS-NH4 medium with 10 mM l-glutamine - NIR nitrite reductase - NR nitrate reductase  相似文献   

19.
Epimastigotes ofTrypanosoma cruzi, the causative agent of Chagas disease, catabolize proteins and amino acids with production of NH3, and glucose with production of reduced catabolites, chiefly succinate andl-alanine, even under aerobic conditions. This aerobic fermentation of glucose is probably due to both the presence of low levels of some cytochromes, causing a relative inefficiency of the respiratory chain for NADH reoxidation during active glucose catabolism, and the lack of NADH dehydrogenase and phosphorylation site I, resulting in the entry of reduction equivalents into the chain mostly as succinate. Phosphoenol pyruvate carboxykinase and pyruvate kinase may play an essential role in diverting glucose carbon to succinate orl-alanine, andl-malate seems to be the major metabolite for the transport of glucose carbon and reduction equivalents between glycosome and mitochondrion. The parasite contains proteinase and peptidase activities. The major lysosomal cysteine proteinase, cruzipain, has been characterized in considerable detail, and might be involved in the host/parasite relationship, in addition to its obvious role in parasite nutrition. Among the enzymes of amino acid catabolism, two glutamate dehydrogenases (one NADP- and the other NAD-linked), alanine aminotransferase, and the major enzymes of aromatic amino acid catabolism (tyrosine aminotransferase and aromatic -hydroxy acid dehydrogenase), have been characterized and proposed to be involved in the reoxidation of glycolytic NADH.  相似文献   

20.
Summary Glucose uptake into plasma membrane vesicles from the maternal surface of the human placenta was measured with the Millipore filtration technique. Uptake ofd-glucose was dependent on the osmolarity of the incubation medium surrounding the vesicles. Uptake ofd-glucose exceeded that ofl-glucose. The uptake ofd-glucose was not enhanced by placing 100mm NaCl or NaSCN in the medium outside the vesicles (none inside) at the onset of uptake determinations.d-glucose transport was inhibited by cytochalasin B; phloretin, phlorizin, and 1-fluoro-2,4-dinitrobenzene.d-glucose uptake was inhibited by 2-deoxy-d-glucose, 3-O-methyl-d-glucose and to a lesser extent byd-galactose. It was not inhibited by -methyl-d-glucoside. Cytochalasin B binding to the vesicles was 30% inhibited in the presence of 80mm d-glucose. The results indicate that the system for facilitated transport ofd-glucose at the maternal face of the placenta is distinctly different from that on the brush-border membrane of intestine or renal tubule and more closely resembles that of human erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号