首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
When (B10.BR X CWB)F1 (BWF1; H-2k/b) mice carrying the H-42b allele at the minor H-42 locus were injected with H-42a C3H.SW (CSW; H-2b) or C3H (H-2k) spleen cells (SC), self-H-2Kb restricted anti-H-42a pCTL in the BWF1 recipients were primed and differentiated to anti-H-42a CTL after in vitro stimulation with (B10.BR X CSW)F1 (BSF1; H-2k/b, H-42b/a) SC. In contrast, anti-H-42a pCTL in H-42b mice were inactivated by injection with H-42-congenic H-42a SC, and stable anti-H-42a CTL tolerance was induced. Preference of H-2Kb restriction of anti-H-42a CTL was strict, and self-H-2Kb-restricted anti-H-42a CTL did not lyse target cells carrying H-42a antigen in the context of H-2Kbm1. Involvement of suppressor cells in the anti-H-42a CTL tolerance was ruled out by the present cell transfer study and the previous cell-mixing in vitro study. Notably, treatment with anti-Thy-1.2 antibody (Ab) plus complement (C) wiped out the ability of CSW SC in the priming of anti-H-42a pCTL of BWF1 mice but left that of C3H SC unaffected, and injection of the anti-Thy-1.2 Ab plus C-treated CSW SC induced anti-H-42a CTL tolerance in the BWF1 recipients. Furthermore, H-42a/b, I-Ab/bm12 [CSW X B6.CH-2bm12 (bm12)]F1 SC could not prime anti-H-42a pCTL in H-42b, I-Ab (CWB X B6)F1 recipients, whereas H-42a/b, I-Ab (CSW X B6)F1 SC primed anti-H-42a pCTL in H-42b, I-Ab/bm12 (CWB X bm12)F1 recipients. The unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC was sometimes corrected by immunization of H-42b female mice with H-42-congenic H-42a male SC. Taking all of the results together, we propose the following. Unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC is caused by "veto cells" contained in the antigenic H-42a SC. Anti-H-42a pCTL in the H-42b recipients directly interacting with H-42-congenic H-42a SC, which bear H-42a antigen and H-2Kb restriction element, are inactivated or vetoed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Previous study demonstrated that anti-H-43a cytotoxic T lymphocyte (CTL) response of H-43b CWB (H-2b) stain carrying non-major histocompatability complex (MHC) genes of C3H and F1 strains raised by crossing CWB with various H-43b strains was restricted exclusively by self H-2Kb (Kb). In the present study, newly produced C3W strain (H-2k, H-43b), which is H-43-congenic to C3H/HeN (H-2k, H-43a), was used as H-43b mice, and possibility of immunodominance of Kb was examined. No anti-H-43a CTL response could be induced in C3W strain and F1 strains raised by crossing C3W with other H-43b strains not carrying Kb. Thus, the possibility of immunodominance of Kb over the other MHC class I alleles could not be supported. We also examined possibility of epistatic effect of I region genes and non-MHC genes on the Kb restriction. (C3W x C57BL/6)F1(I-Ak/b) and (C3W x B6.CH-2bm12)F1(I-Ak/bm12)mice showed equally anti-H-43a CTL response restricted exclusively by self Kb, and (C3W x B10.MBR)F1(Ik/k) mice also showed anti-H-43a CTL response restricted solely by self Kb. Cold target competition experiments demonstrated that H-43b C57BL/10 or A.BY mice, which do not have non-MHC genes of C3H mounted anti-H-43a CTL response restricted solely by self Kb. Thus, no relation of I region genes or non-MHC genes to the Kb restriction was shown. All the results indicate that H-43b mouse strains, including F1, can not achieve anti-H-43a CTL response unless they carry Kb allele. Notably, (C3W x C57BL/6)F1 mice mounted self Kb-restricted anti-H-43a CTL response, whereas (C3W x B6.CH-2bm1)F1 mice carrying mutated Kb could not mount anti-H-43a CTL response at all. These findings indicate strongly that Kb itself is classical Ir gene of anti-H-43a CTL response and directs self Kb restriction of the response.  相似文献   

3.
Presence of the three major pathways (self-Ia restricted, allo-K/D restricted, and allo-Ia restricted pathways) in generating class I-restricted CTL has been reported. The present study was conducted in order to clarify which of the three is the main pathway in mediating tumor allograft rejection. One million EL-4 tumor cells derived from C57BL/6 (B6;H-2b) were inoculated into the various strains of mice that were genetically different from B6. Class I (K/D) Ag-disparate but IA Ag-matched B6.C-H-2bm1 (bm1;Kbm1, IAb, IE-, Db) mice or B10.A (5R) (5R; b, b, k, d) mice could not reject 1 x 10(6) EL-4 tumor cells in spite of the strong generation of CTL against the B6 Ag, suggesting the inability of the self-Ia restricted pathway and the allo-K/D restricted pathway in rejecting tumor allografts. The strains of mice being capable of rejecting EL-4 tumor were disparate from B6 mice in both class I and class II (IA) Ag, suggesting the importance of the allo-Ia restricted pathway in rejecting tumor allografts. To generate CTL against Kb Ag via the allo-Ia restricted pathway in the bm1 mice, 2 x 10(7) B6.H-2bm12 (bm12; b, bm12, -, b) spleen cells were injected into the bm1 mice as a supplementary source of allogeneic APC that possibly raise CTL through CD4+ Th cells of bm1 origin. These bm1 mice became capable of rejecting 1 x 10(6) EL-4 tumor cells. The same was observed in the combination of bm12----B10.A (5R) (b, b, k, d) mice. To further elucidate the role of the class II restricted CD4+ Th cells, anti-CD4 antibody was repeatedly i.v. administered into the C3H/He (C3H; H-2k) or the DBA/2 (DBA; H-2d) mice on days 0, 1, and 4. Injection of anti-CD4 antibody led 1 x 10(6) EL-4 tumor cells to grow and kill the C3H and DBA mice. These results suggest that the main effector CTL pathway involved in tumor allograft rejection is allo-Ia restricted pathway where CD8+ precursor CTL were stimulated by the class II-restricted CD4+ Th cells.  相似文献   

4.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

5.
Pathogenesis of a murine herpes virus was investigated in inbred strains (BALB/c, CBA, AKR and C57BL/10) of mice. After intranasal inhalation, virus was found to replicate primarily in the lungs, followed by haematogenous spread to the target organs (adrenal glands and ganglia). AKR (H-2k) were found to be most susceptible to virus infection while CBA (H-2k) mice appeared to be relatively resistant. Infection of B-cell depleted BALB/c mice resulted in detection of lower lung virus titres in B-cell depleted animals as compared to normal intact mice. Moreover, 3 of 12 normal mice in untreated group died of virus infection while deaths did not occur in the B-cell depleted group. Results of T-cell subset depletion experiments in BALB/c mice revealed maximum mortality in the group depleted of both Lyt-2+ and L3T4+ subpopulations. Infectious virus titres were also higher in lungs of T-cell depleted animals.  相似文献   

6.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

7.
The potential immunogenicity of insulin B chain in beef insulin low-responder H-2k,a and high-responder H-2b,d mice was examined using lymph node proliferation assays. Oxidized B chain was immunogenic in H-2k,a, but not H-2b,d, mice. The T cell population recognized a determinant in OX-B chain associated with I-Ak. These cells did not respond to intact insulin, suggesting that the B chain determinant was not available to I-Ak during immunologic processing of insulin. Responses were observed in H-2k and H-2d, but not H-2b, after immunization with reduced and carboxyamidomethylated-insulin which contains equimolar A chain and B chain. These responses were I-A-restricted and heterogeneous, with reactivity to A chain and B chain determinants. In each case, little or no cross-reactivity was observed between RCAM-insulin and intact insulin. Furthermore, T cell populations induced in H-2k mice selectively recognized OX-B chain or RCAM-B chain, which differ in chemical modification of the thiols of Cys B7 and Cys B19. Similarly, RCAM-BINS-immune T cells from H-2d did not react to OX-B chain. These results indicate that derivatization of the cysteine thiols, through disulfide bonds, oxidation, or carboxyamidomethylation, radically affects T cell recognition of insulin B chain.  相似文献   

8.
The murine class I molecule H-2Kb and its natural gene conversion variant, H-2Kbm8, which differs from H-2Kb solely at 4 aa at the bottom of the peptide-binding B pocket, are expressed in coisogenic mouse strains C57BL/6 (B6) and B6.C-H-2bm8 (bm8). These two strains provide an excellent opportunity to study the effects of Mhc class I polymorphism on the T cell repertoire. We recently discovered a gain in the antiviral CTL repertoire in bm8 mice as a consequence of the emergence of the Mhc class I allele H-2Kbm8. In this report we sought to determine the mechanism behind the generation of this increased CTL diversity. Our results demonstrate that repertoire diversification occurred by a gain in intrathymic positive selection. As previously shown, the emergence of the same Mhc allele also caused a loss in positive selection of T cell repertoire specific for another Ag, OVA-8. This indicates that a reciprocal loss-and-gain pattern of intrathymic selection exists between H-2Kb and H-2Kbm8. Therefore, in the thymus of an individual, a new Mhc allele can select new T cell specificities, while abandoning some T cell specificities selected by the wild-type allele. A byproduct of this repertoire shift is a net gain of T cell repertoire of the species, which is likely to improve its survival fitness.  相似文献   

9.
As revealed by flow cytometric analysis, about 30% of nylon wool nonadherent Lyt-2+ B6 spleen cells were F23+, i.e., were stained with the monoclonal antibody F23.1 directed against an allotypic T-cell receptor determinant. The specificity repertoire of splenic Lyt-2+/F23+ cytotoxic lymphocyte precursors (CLP) from B6 mice was investigated in a limiting dilution (LD) system designed to support clonal expansion in vitro of a representative fraction of this T-cell subset: in highly purified Lyt-2+ responder cells cocultured with mitomycin-treated F23 hybridoma cells in the presence of (recombinant) interleukin 2 under LD conditions, one out of three Lyt-2+/F23+ CLP gave rise to a functional cytotoxic T lymphocyte (CTL) clone. The split-well analysis of individual CTL populations demonstrated a clear-cut segregation of the lytic reactivities toward different allogeneic Con A blast targets. A large fraction of B6-derived CTL clones (3-10%) specifically lysed fully H-2 allogeneic (H-2k, H-2d), or H-2K mutant (bm1) targets. Self-reactive and allorestricted lytic patterns were not found.  相似文献   

10.
The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice   总被引:4,自引:0,他引:4  
Molecular and genetic tools have been used to shed light on the genes that contribute to susceptibility to murine lupus and the mechanisms that lead to immunopathology. The MHC genes and their products have been consistently shown to contribute toward the development of disease. To understand the contribution of MHC-class II genes, our laboratory had derived two inbred strains of mice, NZB.H-2bm12 and NZB.H-2b. These new colonies of mice were studied and compared in the 10th generation backcross; inbreeding was serially followed by H-2 typing, responses to beef/porcine insulin, and the presence of the B6 Ig allotype, IgG2ab. Of great interest is the finding that NZB.H-2bm12, in contrast to NZB.H-2b or NZB (H-2d), mice develop high titer autoantibodies to dsDNA. This result is unique because NZB (H-2d) mice, unliked NZB x NZW (NZB/W F1) or NZB x SWR (SNF1) hybrids do not develop autoantibodies to dsDNA, even after immunization. NZB mice, in contrast, are characterized only by autoantibodies to ssDNA. Our observation is also striking because the gene conversion that resulted in the I-A beta bm12 mutation occurred at amino acid residues 68, 71, and 72 of I-E beta b. Recently the contribution of NZW to accelerated autoimmunity in the NZB x NZW F1 hybrid has also been linked to H-2 and a single amino acid change at amino acid 72 of I-E beta. Thus, amino acid residue 72 may be a hot spot for disorders of immune regulation when superimposed on the appropriate genetic background. NZB mice expressing the I-Abm12 mutation will allow specific dissection of the requirements for autoantibody production to dsDNA uncomplicated by heterozygosity.  相似文献   

11.
CD4 T cells are important for control of infection with murine gammaherpesvirus 68 (gamma HV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control gamma HV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant gamma HV68 that expresses OVA. OVA-specific CD4 T cells limited acute gamma HV68 replication and prolonged the life of infected T-cell receptor-transgenic RAG (DO.11.10/RAG) mice, demonstrating CD4 T-cell antiviral activity, independent of CD8 T cells and B cells. Despite CD4 T-cell-mediated control of acute infection, latent infection was established in DO.11.10/RAG mice. However, OVA-specific CD4 T cells reduced the frequency of latently infected cells both early (16 days postinfection) and late (42 days postinfection) after infection of mice containing CD8 T cells and B cells (DO.11.10 mice). These results show that OVA-specific CD4 T cells have B-cell and CD8 T-cell-independent antiviral functions in the control of acute infection and can, in the absence of preexisting CD8 T-cell or B-cell immunity, inhibit the establishment of gammaherpesvirus latency.  相似文献   

12.
Spleen cells from C57BL/6 (B6) mice generate a strong in vitro cytotoxic T-lymphocyte (CTL) response specific for vesicular stomatitis virus (VSV). Spleen cells from VSV-primed B6-H-2bm3 (bm3) mice, which have a mutation in H-2Kb, require approximately 10-fold more UV-inactivated VSV to generate in vitro secondary anti-VSV CTL, compared with spleen cells from primed B6 mice. Anti-VSV CTL elicited in both bm3 and B6 mice are primarily specific for the viral nucleocapsid protein (N protein), as demonstrated by using recombinant vaccinia viruses that express the VSV N protein. bm3 CTL were found to exhibit only a very low level of lytic activity when tested against autologous VSV-infected concanavalin A spleen cell blasts as well as several H-2b tumor cell lines. The weak anti-VSV response of bm3 CTL was found to be the result of a combination of inefficient recognition of VSV-infected target cells and decreased elicitation of secondary effector cells. VSV-infected bm3 target cells were not killed as well as B6 targets by either bm3 or B6 effectors. This is because of the inefficient recognition of targets, as demonstrated by the fact that VSV-infected bm3 cells were unable to competitively inhibit the lysis of VSV-infected B6 target cells by either bm3 or B6 effectors. By using cells from recombinant mice, it was shown that the CTL response restricted by H-2Kb was low in the bm3 mice, compared with that of the B6 mice. However, the H-2Db-restricted CTL activity was similarly low in both the B6 and bm3 mice. The possibility that the low response to VSV-infected bm3 cells is caused by differences between the bm3 and B6 cells in expression of either viral antigens or H-2K was investigated by radiolabeling and immunoprecipitation. VSV-infected B6 and bm3 cells were found to express equivalent levels of both viral antigens and H-2K. These results indicate that the bm3 mutation alters a functional site on the H-2Kb molecule that is involved in the recognition of VSV-infected cells. The observation that elicitation of bm3 CTL can occur at high antigen doses further suggests that the bm3 mutation results in a lower affinity of H-2K either for viral antigen or for receptor sites on the CTL.  相似文献   

13.
Our previous study revealed that in F1 mice raised by crossing C3H/He or AKR/J mice with various H-2-congenic B10-series strains, parental H-2k spleen cells (SC) could not induce the graft-vs-host reaction (GvHR)-associated immunosuppression (GAIS). We also elucidated that a limited number of non-H-2 genes of parental C3H/He or AKR/J mice that had been incorporated into the F1 hybrids determined the F1 resistance to the GAIS, and the present study was done to explore the mechanism implicated in this type of F1 resistance to GAIS. SC from B10.AL mice carrying an rH-2 (K:k I:k S:k D:d) haplotype but not SC from H-2K B10.BR (k k k k) mice induced GAIS of in vitro CTL responses to third-party alloantigens in H-2k/d (C3H/He x B10.D2)F1 recipients mice. Further, SC from H-2k/a (C3H/He x B10.A)F1 mice carrying heterozygous C3H/B10 non-H-2 background but not SC from the same H-2k/a (B10.BR x B10.A)F1 mice but carrying homozygous B10/B10 background induced GAIS in H-2k/d (C3H/He x B10.D2)F1 recipients. Although C3H/He-, B10.BR-, and C3H.OH (d d d k)-SC were incapable of inducing GAIS in (C3H/He x B10.D2)F1 (k/d k/d k/d k/d) recipients, they were all good inducers of GAIS in (C3H.OH x B10.BR)F1 (d/k d/k d/k k/k) recipients. Exactly the same pattern of co-operative non-H-2 AKR and H-2D region-gene control of GAIS was observed on GvHR induced in H-2k/d (AKR/J x B10.D2)F1 recipients. These results suggest that the non-H-2 genes of C3H/He or AKR/J strain inhibit the functional expression of certain antigenic determinant(s) when it is encoded by heterozygous but not homozygous gene(s) linked tightly to H-2D region of k haplotype. Thus, the F1 resistance to GAIS is mediated by immune response of F1 recipients who miss the antigenic determinant(s) against that expressed on cell surface of GvHR-inducing T lymphocytes.  相似文献   

14.
Infection with Listeria monocytogenes stimulates T cell proliferation and T cell-derived lymphokine production. The release of lymphokines, in turn, "activates" macrophages, enhancing their bactericidal capacity. Because prior studies suggest that I-A+ accessory cells play a critical role in this pathway, we assessed the effects of an anti-I-A antibody on the murine host resistance to listerial infection. To this end, we infused Listeria into control C57BL/6 mice (I-Ab haplotype) and mice of the same strain which had been pretreated 18 hr earlier with D3137 (a monoclonal IgG2a anti-I-Ab,d antibody). Preliminary studies demonstrated that this antibody can markedly inhibit antigen-induced proliferation of Listeria-dependent T cells in vitro and (at a dose of 1 mg/animal) can markedly reduce I-A expression on splenocytes in vivo. Even though D3137 pretreatment prevented the splenomegaly normally observed after Listeria infusion into mice, it protected animals infused with otherwise lethal concentrations of Listeria. Because antibody-treated animals had sevenfold fewer organisms in their spleens 18 hr after infection and 1000-fold fewer organisms than control animals 3 days after infection, improved survival resulted from an antibody-induced increase in the bactericidal capacity of the MPS. Protection was not noted when C1.18.4 (an IgG2a myeloma protein without known antibody activity) was infused into C57BL/6 mice or when D3137 was infused in B10.BR (I-Ak) mice. D3137 also protected (B10 X B10.BR)F1 mice (which are hybrids bearing I-Ab and I-Ak), suggesting that complete blockade of antigen presentation is not a prerequisite for its protective action. Further studies into the mechanism for these effects may provide new insights into the pathophysiology of MPS activation in response to immunologic challenge.  相似文献   

15.
P J Wettstein 《Immunogenetics》1981,14(3-4):241-252
Individual mice were tested for their proliferation T-cell response to H-Y- and H-3-incompatible stimulator cells in secondary mixed lymphocyte culture. Responders expressing the H-2b haplotype were restricted in their response to stimulators presenting H-Y and H-3 in the context of H-2b. Lymphocytes from individual B10 females proliferated in response to H-Y presented with I-Ab and Db. The ratio of I-Ab/Db-restricted responses varied between individual responders, indicating significant qualitative variation between genetically identical responders. The majority of the proliferative response in all tested mice was restricted to the entire H-2b haplotype suggesting complementation of I-Ab- and Db-region genes in presenting the H-Y antigen. Similar observations were made in the response of individual B10.LP mice to the H-3 antigen. H-3-specific, proliferating T cells were restricted to H-3 antigen presented with KbAb and Db with significant variation between individuals in proliferative response to H-3 plus KbAb and Db. In contrast to the response to H-Y, the proliferative response to H-3 plus H-2b could be accounted for by the summation of the proliferative responses to H-3 plus KbAb and Db. These observations demonstrate that the proliferative response to non-H-2H antigens in the context of I-region determinants is not a sine qua non for the T-cell response to these antigens. Further, the individual qualitative and quantitative variation observed with individual genetically identical mice has strong implications for our knowledge of intrastrain variation in immune responsiveness and the characterization of inbred strains for immune responsiveness.  相似文献   

16.
Murine T cell clones were derived that proliferated in response to stimulation by alloantigen or by ovalbumin (OVA) in the presence of irradiated syngeneic spleen cells. Two cloned cell lines of strain B10.BR (H-2k) proliferated in response to alloantigen encoded by I-Ab, whereas the response to OVA was restricted by an element encoded by I-Ak. A cloned cell line of strain B10.A (H-2a) proliferated in response to alloantigen encoded by I-As, whereas the response to OVA was restricted by an element encoded by I-Ak. Cloned cells were stimulated by alloantigen or by OVA to produce lymphokines and to incorporate thymidine. Culture supernatants were collected 24 hr later and were assayed for interleukin 2, colony stimulating factor, interferon, Ia-inducing activity, and interleukin 3; thymidine incorporation was measured 72 hr after stimulation. For each clone tested, stimulation by alloantigen or by OVA led to the production of an identical array of lymphokines. Likewise, the strength of stimulation by alloantigen was approximately equal in magnitude to the strength of stimulation by a particular concentration of OVA. Lymphokine production and thymidine incorporation were co-variant measures of the intensity of stimulation. These data, in combination with data linking OVA reactivity and alloreactivity to identical regions of the major histocompatibility complex, suggest that dual reactivity represents a cross-reaction between alloantigen and self determinants associated with nominal antigen.  相似文献   

17.
Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2(k) mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2(k) mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.  相似文献   

18.
Ia specificities on parental and hybrid cells of an I-A mutant mouse strain   总被引:3,自引:0,他引:3  
Splenic B cells and B cell blasts from the I-A mutant mouse strain B6.C-H-2bm12 were tested by serology with a series of new monoclonal anti-Iab antibodies. Four out of 5 of those monoclonal antibody-defined specificities that are determined by wild-type I-Ab antigens were undetectable on B6.C-H-2bm12 cells. Specificities both present and absent on mutant cells appear to be determinants on the same wild-type molecule, as indicated by sequential precipitation experiments with soluble H-2b antigens. The lack of expression of certain Ia specificities on mutant cells was found not to be the result of disparate control by the Xid gene, which was previously shown to control the expression of Ia.W39, another specificity absent in B6.C-H-2bm12 mice. Serologic testing of Ia specificities on cells and blasts from F1-hybrid mice suggested that the Iabm12 antigens are codominantly expressed, indicating a failure to detect trans regulation or complementation of the mutant phenotype. Another monoclonal antibody-defined Ia specificity dependent on the expression of the E beta polypeptide was normally expressed in B6.C-H-2bm12 mice. These data thus suggest that the lesion of these mutant mice occurred in the A alpha and/or A beta structural gene, resulting in the loss of several Ia specificities.  相似文献   

19.
The immunogenicity of a novel synthetic peptide consisting of an average of 40 (Asn-Ala-Asn-Pro) repeats of the circumsporozoite protein of Plasmodium falciparum, (NANP)40, was studied in mice without using any carrier proteins. First, high titers of anti-(NANP)40 antibodies could be obtained after immunization of C57BL/6 mice. These antibodies also reacted with an extract of mosquitoes infected with P. falciparum sporozoites. C57BL/6 nu/nu mice did not produce antibodies against (NANP)40. Secondly, when 14 strains of mice with nine different H-2 haplotypes were immunized with (NANP)40 without carrier, only H-2b mice were found to produce anti-(NANP)40 antibodies, whereas all non-H-2b mice were consistently unresponsive. This response was demonstrated to be I-A-linked by using recombinant and mutant mice. I-Ab [B10.A(5R)] mice produced anti-(NANP)40 antibodies as well as H-2b inbred mice. B6CH-2bm12 I-Ab-mutant mice showed only a very low response. Third, the antibody response against (NANP)40 could be induced in nonresponder mice by immunization with the peptide coupled to a carrier protein. In view of the existence of such an exceptional H-2b restriction in the response to sporozoite synthetic peptides in mice, the triggering of peptide-specific T cell responses in humans receiving sporozoite malaria vaccines might be difficult to achieve.  相似文献   

20.
We have transferred the mouse Ak alpha and Ak beta genes, which encode the class II I-Ak molecule, into mouse L-cell fibroblasts and hamster B cells. I-Ak molecules are expressed on the surface of both cell types. The L-cell and hamster B-cell I-Ak molecules appear normal by serological analyses and two-dimensional gel electrophoresis. Furthermore, the I-Ak molecules on L cells can act as targets for the allogenic T-cell killing of the transformed L cells. The I-Ak molecules in both mouse fibroblasts and hamster B cells can present certain antigens to T-cell helper hybridomas. Thus only class II molecules are required to convert the nonantigen-presenting cell. Accordingly, it will be possible to dissect the structure-function relationships existing between Ia molecules, foreign antigen, and T-cell receptor molecules by in vitro site-directed mutagenesis and gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号