首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The presynaptic terminals of skate ( Raja montagui ) electric organ were tested for their sensitivity to calcium channel antagonists. Acetylcholine (ACh) release and the elevation of intraterminal Ca2+ concentrations triggered by K+ depolarisation were studied. ACh release was measured as 3H efflux from slices of organ prelabelled with [3H]choline. Depolarisation caused a marked, Ca2+-dependent increase in 3H efflux that was completely blocked by 100 µ M Cd2+ and by 300 n M ω-conotoxin-MVIIC (MVIIC). Inhibition by MVIIC was concentration dependent (IC50 of ∼20 n M ) and reversible. No inhibition was seen with nifedipine (5 µ M ) or the two other peptide antagonists studied: ω-conotoxin-GVIA (GVIA) at 5 µ M and ω-agatoxin-IVA (Aga-IVA) at 1 µ M . In a "nerve plate" preparation (a presynaptic plexus of nerve fibres, Schwann cells, and nerve terminals) changes in intraterminal Ca2+ concentrations were measured by microfluorimetry using fluo-3. An increase in fluorescence, indicating a rise in the free [Ca2+], rapidly followed K+ depolarisation, and this change was restricted to the nerve terminals. This response was insensitive to nifedipine (5 µ M ), GVIA (5 µ M ), and Aga-IVA (300 n M ) but almost completely abolished by MVIIC (1 µ M ). MVIIC inhibition was concentration dependent and partially reversible. These results show that the nerve terminals in skate electric organ have calcium channels with a pharmacological sensitivity that is markedly different from the established L, N, and P types in other systems but shares some, but not all, of the features of the recently described Q type.  相似文献   

2.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT; 0.5 μM and above) stimulated the release of [3H]dopamine ([3H]DA) from particulate fractions of the carp ( Cyprinus carpio ) retina. The 5-HT effect was dose- and Ca2+-dependent, and was structurally specific. A similar response was not elicited by the other indoles (5,6-dihydroxytryptamine, 5,7-dihydroxytryptamine, 5-hydroxytrypto-phan, or 5-hydroxyindoleacetic acid) examined. An increase in [3H]DA release was elicited by addition of 5-HT agonists (5-methoxytryptamine, 5-methoxy- N,N- dimethyltryptamine, and tryptamine), but not antagonized by three 5-HT antagonists (metergolin, methysergide, and spiperone). Either DA alone or noradrenaline (0.5 m M ) produced a large increase in [3H]DA release from the particulate fractions, but this action was Ca2+-independent. Further, no significant release of [3H]γ-aminobutyric acid could be evoked by 5-HT (0.5 mM) under similar experimental conditions. Taken together, the present data suggest that 5-HT stimulates [3H]DA release from the fish retina through a specific receptor-mediated mechanism on dopaminergic terminals, but not through an exchange or nonspecific phenomenon.  相似文献   

3.
Abstract: Serotonin (5-HT) applied at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis enhanced dopamine (DA) outflow up to 173, 283, and 584% of baseline values, respectively. The 5-HT effect was partially reduced by 1 or 10 µ M GR 125,487, a 5-HT4 antagonist, and by 100 µ M DAU 6285, a 5-HT3/4 antagonist, whereas the 5-HT1/2/6 antagonist methiothepin (50 µ M ) was ineffective. In the presence of tetrodotoxin the effect of 1 µ M 5-HT was not affected by 5-HT4 antagonists. In addition, tetrodotoxin abolished the increase in DA release induced by the 5-HT4 agonist ( S )-zacopride (100 µ M ). In striatal synaptosomes, 1 and 10 µ M 5-HT increased the outflow of newly synthesized [3H]DA up to 163 and 635% of control values, respectively. The 5-HT4 agonists BIMU 8 and ( S )-zacopride (1 and 10 µ M ) failed to modify [3H]DA outflow, whereas 5-methoxytryptamine (5-MeOT) at 10 µ M increased it (62%). In prelabeled [3H]DA synaptosomes, 1 µ M 5-HT, but not ( S )-zacopride (1 and 10 µ M ), increased [3H]DA outflow. DAU 6285 (10 µ M ) failed to modify the enhancement of newly synthesized [3H]DA outflow induced by 5-MeOT or 5-HT (1 µ M ), whereas the effect of 5-HT was reduced to the same extent by the DA reuptake inhibitor nomifensine (1 µ M ) alone or in the presence of DAU 6285. These results show that striatal 5-HT4 receptors are involved in the 5-HT-induced enhancement of striatal DA release in vivo and that they are not located on striatal DA terminals.  相似文献   

4.
Abstract: The abilities of d -fenfluramine ( d -F) and that of d -norfenfluramine ( d -NF) to inhibit [3H]serotonin ([3H]5-HT) accumulation in normal and reserpinized synaptosomes were compared to establish to what extent the serotonin-releasing activity of the two drugs might contribute to reduced accumulation of [3H]5-HT. The results indicate that the inhibitory action of ( d -NF) on [3H]5-HT accumulation is due principally to its ability to release [3H]5-HT. In contrast, the interference of release in accumulation studies does not seem to play an important role for d -F, suggesting that release from the granular pool and true uptake inhibition are two different mechanisms by which d -F affects serotonin neurons in vitro .  相似文献   

5.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

6.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

7.
The role of l -aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well-known excitatory neurotransmitter l -glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of l -aspartate, but not those of l -glutamate, became sensitive to dl -threo-β-benzyloxyaspartic acid ( dl -TBOA), an excitatory amino acid transporter inhibitor. In the presence of dl -TBOA, the 50 mM KCl-evoked release of l -aspartate was still largely external Ca2+-dependent. The dl -TBOA insensitive, external Ca2+-independent component of the 50 mM KCl-evoked overflows of l -aspartate and l -glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of l -aspartate and l -glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced l -aspartate and l -glutamate release was completely external Ca2+-dependent and never affected by dl -TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H] d -aspartate and [3H] l -glutamate. Therefore, our data showing that l -aspartate is released from nerve terminals by calcium-dependent, exocytotic mechanisms support the neurotransmitter role of this amino acid.  相似文献   

8.
Abstract: The time course of Ca2+-dependent [3H]acetylcholine ([3H]ACh) release and inactivation of 45Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+]o. Under conditions where the intrasynaptosomal stores of releasable [3H]ACh were neither exhausted nor replenished in the course of stimulation, the K+-evoked release consisted of a major (40% of the releasable [3H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+-stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+-stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels.  相似文献   

9.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

10.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

11.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   

12.
Fluoxetine, a selective 5-HT uptake inhibitor, inhibited 15 mM K+-induced [3H] 5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K+ used to depolarize the synaptosomes and the concentration of external Ca2+. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [3H] 5-HT release induced by the Ca2+-ionophore A 23187 or Ca2+-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K+-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca2+ channels and Ca2+ entry. Whereas fluoxetine and paroxetine inhibited binding of [3H] nitrendipine to the dihydropyridine-sensitive L-type Ca2+ channel, the less selective uptake inhibitors did not alter binding. The dihydropyridine antagonist nimodipine partially blocked fluoxetine-induced inhibition of release. Moreover enhanced K+-stimulated release due to the dihydropyridine agonist Bay K 8644 was reversed by fluoxetine. Fluoxetine also inhibited the K+-induced increase in intracellular free Ca2+ in fura-2 loaded synaptosomes. These data are consistent with the suggestion that fluoxetine inhibits K+-induced [3H] 5-HT release by antagonizing voltage-dependent Ca2+ entry into nerve terminals.  相似文献   

13.
Abstract: The kinetics and pharmacology of N G-nitro- l -[2,3,4,5-3H]arginine ( l -[3H]NOARG) binding to rat cerebellum were investigated using in vitro radioligand binding. Specific l -[3H]NOARG binding in cerebellum was of nanomolar affinity, reversible, saturable, and best fit to a single-site model. Specific binding was Ca2+ dependent and sensitive to pH (with an optimum of 5.5–7.0). Added calmodulin (1.5–40 µg/ml) had no influence on specific l -[3H]NOARG binding. However, the calmodulin antagonists W-5, W-13, and calmidazolium inhibited l -[3H]NOARG binding with IC50 values in the micromolar range, and calmodulin (10 µg/ml) competitively reversed this inhibition. Nitric oxide synthase (NOS) inhibitors ( N G-nitro- l -arginine methyl ester and N G-monomethyl- l -arginine acetate) and l -arginine displaced l -[3H]NOARG binding with IC50 values in the nanomolar range, whereas d -arginine and basic amino acids ( l -lysine and l -histidine) displaced l -[3H]NOARG binding with IC50 values in the millimolar range. A comparison of the NOS functional assay with l -[3H]NOARG binding in rat cerebellum showed similar profiles of Ca2+ dependency and inhibitory kinetics. Quantitative autoradiographic distribution of l -[3H]NOARG binding sites was significantly higher in the molecular layer than in the granular layer of cerebellum. These studies confirm the potential use of l -[3H]NOARG binding to study the regional distribution and functional properties of NOS.  相似文献   

14.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

15.
Abstract: The effect of melatonin on [3H]glutamate uptake and release in the golden hamster retina was studied. In retinas excised in the middle of the dark phase, i.e., at 2400 h, melatonin (0.1 and 10 n M ) significantly increased [3H]glutamate uptake, and this effect persisted in a Ca2+-free medium. On the other hand, melatonin significantly increased [3H]glutamate release in retinas excised at 2400 h, but this effect was Ca2+ sensitive. Melatonin significantly increased 45Ca2+ uptake by a crude synaptosomal fraction from retinas of hamsters killed at 2400 h. In retinas excised at 1200 h, melatonin had no effect on [3H]glutamate uptake, [3H]glutamate release, or 45Ca2+ uptake at any concentration tested. Cyclic GMP analogues, i.e., 8-bromoguanosine 3',5'-cyclic monophosphate and 2'- O -dibutyrylguanosine 3',5'-cyclic monophosphate, significantly increased [3H]glutamate uptake, [3H]glutamate release, and 45Ca2+ uptake by tissue removed at 1200 and 2400 h, suggesting that the effects of melatonin could correlate with a previously described effect of melatonin on cyclic GMP levels in the golden hamster retina. Taking into account the key role of glutamate in visual mechanisms, the results suggest the participation of melatonin in retinal physiology.  相似文献   

16.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

17.
Studies on hippocampal glycine release are extremely rare. We here investigated release from mouse hippocampus glycinergic terminals selectively pre-labelled with [3H]glycine through transporters of the GLYT2 type. Purified synaptosomes were incubated with [3H]glycine in the presence of the GLYT1 blocker NFPS to abolish uptake (∼ 30%) through GLYT1. The non-GLYT1-mediated uptake was entirely sensitive to the GLYT2 blocker Org25543. Depolarization during superfusion with high-K+ (15–50 mmol/L) provoked overflows totally dependent on external Ca2+, whereas in the spinal cord the 35 or 50 mmol/L KCl-evoked overflow (higher than that in hippocampus) was only partly dependent on extraterminal Ca2+. In the hippocampus, the Ca2+-dependent 4-aminopyridine (1 mmol/L)-evoked overflow was five-fold lower than that in spinal cord. The component of the 10 μmol/L veratridine-induced overflow dependent on external Ca2+ was higher in the hippocampus than that in spinal cord, although the total overflow in the hippocampus was only half of that in the spinal cord. Part of the veratridine-evoked hippocampal overflow occurred by GLYT2 reversal and part by bafilomycin A1-sensitive exocytosis dependent on cytosolic Ca2+ generated through the mitochondrial Na+/Ca2+ exchanger. As glycine sites on NMDA receptors are normally not saturated, understanding mechanisms of glycine release should facilitate pharmacological modulation of NMDA receptor function.  相似文献   

18.
Abstract: Involvement of protein kinase C (PKC) in the release of γ-aminobutyric acid (GABA) was examined in Xenopus laevis oocytes injected with mRNA from rat cerebellum, as compared with findings in slices of rat cerebellum. The mRNA-injected oocytes preloaded with [3H]GABA showed spontaneous release of [3H]GABA, ∼0.5% of GABA content per 1 min. Stimulation with either Ca2+ ionophore (A23187) or a high K+ concentration increased the release of [3H]GABA from slices of rat deep cerebellar nucleus and mRNA-injected oocytes but not from noninjected and water-injected oocytes. 12- O -Tetradecanoylphorbol 13-acetate (10–300 n M ) but not 4α-phorbol 12,13-didecanoate (300 n M ) potentiated the A23187-stimulated release of [3H]GABA from slices and from mRNA-injected oocytes, in a concentration-dependent manner. Thus, machinery associated with release processes of GABA can be expressed in oocytes by injecting rat cerebellar mRNA, and PKC participates in GABA release from the functionally expressed GABAergic nerve terminals.  相似文献   

19.
Abstract: We have used postnatal rat cerebellar astrocyte-enriched cultures to study the excitatory amino acid receptors present on these cells. In the cultures used, type-2 astrocytes (recognized by the monoclonal antibodies A2B5 and LB1) selectively took up γ-[3H]aminobutyric acid ([3H]GABA) and released it when incubated in the presence of micromolar concentrations of kainic and quisqualic acids. The releasing effect of kainic acid was concentration dependent in the range of 5–100 μ M . Quisqualate was more effective than kainate in the lower concentration range but less effective at concentrations at which its releasing activity was maximal (∼50 μ M ). N -Methyl- d -aspartic acid and dihydrokainate (100 μ M ) did not stimulate [3H]GABA release from cultured astrocytes. l -Glutamic acid (20–100 μ M ) stimulated [3H]GABA release as effectively as kainate. The stimulatory effects of kainate and quisqualate on [3H]GABA release were completely Na+ dependent; that of kainate was also partially Ca2+ dependent. Kynurenic acid (50–200 μ M ) selectively antagonized the releasing effects of kainic acid and also that of l -glutamate; quisqualate was unaffected. Quisqualic acid inhibited the releasing effects of kainic acid when both agonists were used at equimolar concentrations (50 μ M ). d -[3H]aspartate was taken up by both type-1 and type-2 astrocytes, but only type-2 astrocytes released it in the presence of kainic acid. Excitatory amino acid receptors with a pharmacology similar to that of the receptors present in type-2 astrocytes were also expressed by the immature, bipotential progenitors of type-2 astrocytes and oligodendrocytes.  相似文献   

20.
Abstract: In primary cultures of cerebellar granule cells, glutamate, aspartate, and N -methyl-d-aspartate (NMDA) induced a dose-dependent release of [3H]arachidonic acid ([3H]AA) which was selective for these agonists and was inhibited by NMDA receptor antagonists. The agonist-induced [3H]AA release was reduced by quinacrine at concentrations that inhibited phospholipase A2 (PLA2) but affected neither the activity of phospholipase C (PLC) nor the hydrolysis of phosphoinositides induced by glutamate or quisqualate. Thus, the increased formation of AA was due to the receptor-mediated activation of PLA2 rather than to the action of PLC followed by diacylglycerol lipase. The receptor-mediated [3H]AA release was dependent on the presence of extracellular Ca2+ and was mimicked by the Ca2+ ionophore ionomycin. Pretreatment of granule cells with either pertussis or cholera toxin failed to inhibit the receptor-mediated [3H]AA release. Hence, in cerebellar granule cells, the stimulation of NMDA-sensitive glutamate receptors leads to the activation of PLA2 that is mediated by Ca2+ ions entering through the cationic channels functioning as effectors of NMDA receptors. A coupling through a toxin-sensitive GTP-binding protein can be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号