首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wikström SA  Hillebrand H 《Oecologia》2012,168(1):175-186
Increased biological diversity due to invasion by non-indigenous species (NIS) is a global phenomenon with potential effects on trophic interactions and ecosystem processes in the invaded habitat. We assessed the effects of resource availability and invasion of three non-indigenous invertebrate grazers (two crustaceans and a snail) on secondary production, relative dominance of NIS grazers and resource depletion in experimental freshwater mesocosms. The relative dominance of NIS grazers increased with increasing initial resource availability, although the effect was largest for one of the three species. The effect was due to the fact that all the included non-indigenous grazers were able to expand their populations quickly in response to resource addition. For the most dominating species, the increased grazer diversity due to invasion in turn resulted in higher production of grazer biomass and a more efficient depletion of the periphyton resource. The effect was largest at high initial resource availability, where NIS dominance was most pronounced. Our results show that an invasion-induced increase in species diversity can increase resource depletion and consequently production, but that the effect depends on identity of the introduced species. The results also suggest that properties of the recipient system, such as resource availability, can modulate ecosystem effects of NIS by affecting invader success and dominance.  相似文献   

2.
1. This experiment studied the effects of differing levels of the complexity of substratum architecture at two spatial scales on the distribution and abundance of benthic algae and invertebrates, and the strength of the trophic interaction between invertebrate grazers and algae. Some estimates of the effects on invertebrate colonization rates were also made. 2. Four levels of microhabitat architectural complexity were created using artificial substrata (clay tiles) and placed in Mountain River, Tasmania, in two riffle types (bedrock and boulder-cobble) of differing large-scale substratum complexity. After a colonization period, invertebrate grazers were removed from half the tiles to measure the effects of grazing. Invertebrates on the tiles were also counted and identified. At the end of the experiment, algae were removed from the tiles and analysed for chlorophyll a. 3. Invertebrate grazers did not reduce algal biomass during the experiment, and microhabitat-scale architecture influenced algal biomass more strongly than riffle-scale architecture. Highly complex microhabitat architecture increased algal biomass by providing more surface area, but once standardized for surface area, algal biomass decreased as the complexity of microhabitat architecture increased. 4. Microhabitat-scale architecture was also predominant in determining invertebrate density and the identity of the dominant grazer species. In contrast to algal biomass, invertebrate densities and species density increased with the complexity of microhabitat architecture, suggesting that refuges from flow (and possibly predation) were as important to river invertebrates as the distribution of their food source. 5. Riffle-scale architecture had some effect on the colonization of two slow-moving grazer taxa, but, overall, the colonization processes of slow-moving grazers were determined mostly by the complexity of microhabitat-scale architecture.  相似文献   

3.
How do grazers affect periphyton heterogeneity in streams?   总被引:1,自引:1,他引:0  
Alvarez M  Peckarsky BL 《Oecologia》2005,142(4):576-587
The effects of grazing by stream invertebrates on algal biomass and spatial heterogeneity were tested experimentally in flow-through microcosms with natural substrates (rocks). One experiment tested the effects of fixed densities of three species of grazers (the caddisfly Allomyia sp. and two mayflies, Epeorus deceptivus and Baetis bicaudatus) on periphyton. Baetis was tested with and without chemical cues from fish predators, which reduced grazer foraging activity to levels similar to the less mobile mayfly (Epeorus). Mean algal biomass (chlorophyll a; chl a) was reduced in grazer treatments compared to ungrazed controls, but there were no differences among grazer treatments. Algal heterogeneity (Morisita index) increased with grazer mobility, with the highest heterogeneity occurring in the Baetis-no fish treatment (most mobile grazer) and the lowest in the caddisfly treatment (most sedentary grazer). A second experiment used a three factorial design, and tested whether initial resource distribution (homogeneous vs. heterogeneous), Baetis density (high vs. low) and fish odor (present vs. absent) affected grazer impact on algal resources. Abundances of Baetis and chl a on individual rocks were recorded to explore the mechanisms responsible for the observed distributions of algae. Initial resource heterogeneity was maintained despite being subjected to grazing. Mean chl a was highest in controls, as in experiment I, and effects of Baetis on algal biomass increased with grazer density. There were no fish effects on algal biomass and no effects of grazer density or fish on algal heterogeneity. At the scale of individual rocks Baetis was unselective when food was homogeneously distributed, but chose high-food rocks when it was heterogeneously distributed. Results of these mechanistic experiments showed that Baetis can track resources at the scale of single rocks; and at moderate densities mobile grazers could potentially maintain periphyton distributions observed in natural streams.  相似文献   

4.
Consumer effects decline with prey diversity   总被引:6,自引:3,他引:3  
While consumer species diversity is known to influence the capture of limited resources, little is known about how prey diversity impacts the transfer of energy and matter among trophic levels. Here, we perform a meta‐analysis of experiments that have examined the impact of grazers on the biomass of periphytic algae to test the hypothesis that the magnitude of consumer (grazer) effects on prey (algae) depends on the species diversity of the prey assemblage. The analysis reveals that consumer effects tend to decrease as the diversity of a prey assemblage increases. This trend is robust for several different, yet complementary indices of grazer effect size and algal diversity. The trend also remains significant after statistically controlling for a variety of factors that can covary with prey diversity among studies. We discuss several possible mechanisms for the documented pattern, such as diversity enhancing the probability of inedibility and of positive interactions.  相似文献   

5.
Rosenfeld  Jordan S. 《Hydrobiologia》1997,344(1-3):75-79
Studies of benthic invertebrates in lakes and streams suggest thatlarge-bodied herbivores are more efficient grazers than smallerones. In order to assess the effect of larger herbivores on smallergrazing invertebrates, the presence of dominant grazer taxa wasmanipulated in streamside troughs in a first order temperaterainforest stream in British Columbia. The presence of mayflies(Ameletus sp.) and tailed frog tadpoles (Ascaphustruei) reduced both algal biomass and the abundance of herbivorouschironomids (Orthocladiinae) on ceramic tiles. This confirms thatlarge mobile grazers in streams have a negative effect on smallersessile invertebrate grazers either through resource competition ordirect consumption (predation).  相似文献   

6.
Theoretical predictions and empirical studies suggest that resident species diversity is an important driver of community invasibility. Through trait-based processes, plants in communities with high resident species diversity occupy a wider range of ecological niches and are more productive than low diversity communities, potentially reducing the opportunities for invasion through niche preemption. In terrestrial plant communities, biotic ecosystem engineers such as earthworms can also affect invasibility by reducing leaf litter stocks and influencing soil conditions. In a greenhouse experiment, we simultaneously manipulated resident species diversity and earthworm presence to investigate independent and interactive effects of these two variables on the success of several invasive plants. Higher diversity of resident species was associated with lower biomass of invasives, with the effect mediated through resident species biomass. The presence of earthworms had a strong positive effect on the biomass of invasive species across all levels of resident species diversity and a weaker indirect negative effect via decreased soil moisture. Earthworms also weakened the positive correlation between resident species diversity and productivity. We did not observe any interactive effects of resident species biomass and earthworms on invasive species success. Partitioning the net biodiversity effect indicated that selection effects increased with resident species diversity whereas complementarity effects did not. Results suggest that managing for diverse forest communities may decrease the susceptibility of these communities to invasions. However, the presence of introduced earthworms in previously earthworm-free sites may undermine these efforts. Furthermore, future studies of plant community invasibility should account for the effects of introduced earthworms.  相似文献   

7.
Rachael E. Blake  J. Emmett Duffy 《Oikos》2010,119(10):1625-1635
When multiple stressors act simultaneously, their effects on ecosystems become more difficult to predict. In the face of multiple stressors, diverse ecosystems may be more stable if species respond differently to stressors or if functionally similar species can compensate for stressor effects on focal species. Many habitats around the globe are threatened by multiple stressors, including highly productive seagrass habitats. For example, in Chesapeake Bay, USA, regional climate change predictions suggest that elevated temperature and freshwater inputs are likely to be increasingly important stressors. Using seagrass mesocosms as a model system, we tested whether species richness of crustacean grazers buffers ecosystem properties against the impacts of elevated temperature and freshwater pulse stressors in a fully factorial experiment. Grazer species responded to pulsed salinity changes differently; abundance of Elasmopus levis responded negatively to freshwater pulses, whereas abundance of Gammarus mucronatus and Erichsonella attenuata responded positively or neutrally. Consistent with the hypothesis that biodiversity provides resistance stability, biomass of epiphytic algae that form the base of the food web was less affected by stressors in species‐rich grazer treatments than in single‐species grazer treatments. Stochastic (among‐replicate) variation of sessile invertebrate biomass within treatments was also reduced in more diverse grazer treatments. Therefore, grazer species richness tended to increase the resistance stability of both major components of the seagrass fouling community, algae and invertebrates, in the face of environmental stressors. Finally, in our model system, multi‐stressor impacts suggested a pattern of antagonism contrary to previous assumptions of synergistic stressor effects. Overall, our results confirm that invertebrate grazer species are functionally diverse in their response to environmental stressors, but are largely functionally redundant in their grazing effects leading to greater resistance stability of certain ecosystem properties in diverse grazer assemblages even when influenced by multiple environmental stressors.  相似文献   

8.
Large herbivores can both positively and negatively affect primary productivity and rates of nutrient cycling in different ecosystems. Positive effects of grazers in grasslands have been attributed to migratory behavior of the dominant ungulate species and soil fertility. We studied the effects of grazers on aboveground net primary productivity (ANPP) and N cycling on central Kenyan rangeland characterized by intense, chronic grazing by a mixed community of cattle and resident native ungulates. Exclosure studies conducted at high and low levels of soil fertility showed that both soil fertility and annual rainfall patterns mediate the effects of grazers on ANPP and N cycling. In a low-rainfall year with short (1 month) growing seasons, grazers reduced aboveground productivity regardless of soil nutrient availability. However, in a high-rainfall year with a 5-month growing season, grazers increased ANPP on nutrient-rich glades and suppressed ANPP on nutrient-poor bushland sites. Concomitant studies of grazer effects on N cycling revealed complex interactions with the seasonal pattern of N-mineralization and inorganic N availability. Grazers increased the size of the inorganic N pool available to plants at the onset of the growing season, particularly in nutrient-rich glades. However, grazers also decreased N mineralization rates at all sites early in the growing season. Measures of N availability via ion-exchange resin bags suggested that the combined effects of grazers on inorganic N pool fluctuations and N-mineralization rates resulted in a net increase in N availability at glade sites and a net decrease in N availability at bushland sites. The net effect of grazers on soil N availability mirrored grazer effects on ANPP in the high-rainfall year. Overall, our results suggest that grazer effects on N dynamics are closely linked to effects on productivity and resilience to drought. Furthermore, even under optimal conditions of high soil fertility and above-average rainfall, grazer promotion of ANPP in this chronically grazed system dominated by resident ungulates was small compared to systems dominated by migratory ungulates.  相似文献   

9.
Seagrass leaves are often densely covered by epiphytic algae which can suppress seagrass productivity and has been implicated in declines of seagrass meadows worldwide. The net effect of epiphytes on seagrass growth and morphology depends on the independent and interactive effects of a variety of factors, including nutrient availability and the intensity of grazing on epiphytes. Here I report the results of a mesocosm experiment designed to test the effects of nutrient addition and within-functional group variation (grazer species composition and the source population of seagrass) on the strength of the interactions among grazers, epiphytes, and turtle grass (Thalassia testudinum). Turtle grass ramets from two sites in the northern Gulf of Mexico were cleared of epiphytes and transplanted into common-garden mesocosms. Replicate ramets were grown in a split-split plot design with two levels of dissolved nutrients and four different grazer species combinations (Tozeuma carolinense alone, Pagurus maclaughlinae alone, both species together, and no grazers present). As expected, grazers had a significant negative effect on epiphyte biomass/leaf area and a significant positive effect on turtle grass growth in the mesocosms. The two species were more similar in their direct effects on epiphyte biomass than in their indirect effects on turtle grass growth; this may reflect differences in epiphyte community composition under different grazer treatments. The effect of nutrient addition on turtle grass growth depended critically on the intensity of grazing: in the presence of grazers, turtle grass tended to produce a greater biomass of new leaf tissue in the tanks with nutrients added than in the control tanks. However, when grazers were absent, the direction of the effect was reversed, and plants with nutrients added grew less than the control plants. The two source populations of turtle grass differed significantly in epiphyte biomass/leaf area accrued in the mesocosms as well as in the strength of the effect of grazers on turtle grass growth. This suggests that population differentiation in seagrass interactions with epiphytes, as well as spatial and temporal variation in resources and grazer community composition, can greatly effect the role of epiphytes in limiting seagrass productivity.  相似文献   

10.
Grazer diversity effects on ecosystem functioning in seagrass beds   总被引:10,自引:3,他引:7  
High plant species richness can enhance primary production, animal diversity, and invasion resistance. Yet theory predicts that plant and herbivore diversity, which often covary in nature, should have countervailing effects on ecosystem properties. Supporting this, we show in a seagrass system that increasing grazer diversity reduced both algal biomass and total community diversity, and facilitated dominance of a grazer‐resistant invertebrate. In parallel with previous plant results, however, grazer diversity enhanced secondary production, a critical determinant of fish yield. Although sampling explained some diversity effects, only the most diverse grazer assemblage maximized multiple ecosystem properties simultaneously, producing a distinct ecosystem state. Importantly, ecosystem responses at high grazer diversity often differed in magnitude and sign from those predicted from summed impacts of individual species. Thus, complex interactions, often opposing plant diversity effects, arose as emergent consequences of changing consumer diversity, advising caution in extrapolating conclusions from plant diversity experiments to food webs.  相似文献   

11.
Nyström P  McIntosh AR 《Oecologia》2003,136(2):279-288
Predatory species have been introduced to habitats spanning a wide range of environmental conditions. To better understand the consequences of predation in natural communities we need to examine how variations in abiotic factors modify the influence of predation. The effects of introduced predators may vary amongst habitats if natural disturbance affects the abundance and taxonomic composition of consumers and their resources, or the predator alters recolonisation after disturbance. We tested whether a bed-moving disturbance altered subsequent interactions involving native and introduced predatory fish, invertebrate grazers and algae in experimental channels within a New Zealand stream. Disturbance reduced the abundance of invertebrates by 84%, and induced mortality of Conoesucidae caddisflies. However, the relative abundance of taxa changed little immediately following the disturbance. Invertebrate communities recovered following disturbance in fishless channels and those with native galaxiids (Galaxias vulgaris), and were almost indistinguishable from undisturbed fishless controls after 2 weeks. Invertebrate abundance declined and algal abundance increased in channels with exotic brown trout (Salmo trutta) and their effect was strongest in previously disturbed channels. However, predators and disturbance only had interactive effects on grazer emigration rates. Trout affected grazers through direct consumption (e.g. Conoesucidae caddisflies), and induced higher emigration rates of grazers from channels via drift (e.g. the mayfly Deleatidium). The effects of predatory trout and galaxiids combined differed in disturbed and stable channels. The observed combined effects of predatory trout and galaxiids on invertebrate grazers were lower than expected in stable channels partly due to low emigration rates of Conoesucidae, whereas emigration of grazers was higher than expected in the disturbed channels. The biomass of algae was higher than expected in disturbed channels with both predators. Collectively, our results indicate that predator substitutability and the non-lethal effects of introduced predators varied depending on disturbance history, but their effects on the biomass of grazers and algae did not.  相似文献   

12.
13.
Periphyton removal related to phosphorus and grazer biomass level   总被引:4,自引:0,他引:4  
1. The proliferation of nuisance periphyton in enriched streams may be dependent on the biomass of the grazing macroinvertebrates present. In the present study, the effectiveness of grazer size and biomass in controlling periphyton and the extent to which grazing effectiveness was affected by enrichment level were determined. 2. Two sets of experiments with two caddisfly grazers were conducted in laboratory channels during spring and summer 1995 and 1996. The first set tested the combined effect of phosphorus enrichment and grazing, while the second set tested the effect of variable grazer biomass on periphyton biomass. 3. Grazing reduced periphyton biomass in excess of 80%, compared to ungrazed controls. Grazers were equally effective in controlling filamentous green algae, Stigeoclonium, diatoms and small colonial greens. Near complete removal of periphyton biomass by grazing occurred at even at the lowest grazer biomass level (750 mg m??2, i.e. approximately one-third of natural levels). 4. Grazing controlled periphyton biomass more than did enrichment with soluble reactive phosphorus (SRP). 5. Grazing rates in the phosphorus-grazing interaction experiments averaged about 6 mg chl a g invertebrate??1 day??1, which was similar to past work in these channels and elsewhere, while rates were about five-fold higher in the variable grazer biomass experiments. 6. Simulating effects of SRP and grazing with a calibrated model suggests that higher SRP levels would be necessary to exceed a nuisance periphyton biomass level if grazers were present. However, if grazer biomass was more than 1500 mg m??2, a nuisance level would probably not be exceeded at any SRP.  相似文献   

14.
Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus–guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.  相似文献   

15.
It has been suggested that submerged aquatic plants can influence the nutritional quality of the periphyton which grows on their surfaces, making it more nutritious for grazing invertebrates, particularly snails. In return, these grazers might preferentially feed on the periphyton and clear the plants of a potential competitor, with the plants and grazers both gaining from this mutualistic relationship. A highly replicated experiment was conducted, in which the nature of the plant (isoetid and elodeid types compared with similar-shaped inert substrata), the nutrient loading, and the influence of periphyton grazers (the bladder snail, Physa fontinalis) of similar size and history were controlled. Plant growth and survival significantly increased in the presence of the periphyton grazer. Whilst the presence of the grazers had the largest influence on periphyton abundance, nutrient availability and plant type also had effects. Plant type had little influence on the nutritional quality of the periphyton measured as carbohydrate, protein and C:N. Effects of treatment on snail growth, and the timing and extent of snail reproduction disappeared when they were compared with the quantity of periphyton available. There was no evidence of enhanced grazer success in the presence of the live plants compared with inert substrata. Although submerged plants affect the growth and reproduction of the grazers which feed on their surfaces, through differences in the amount of periphyton which grows there, we found no evidence that they manipulate the periphyton to encourage such grazers. Received: 1 September 1998 / Accepted: 12 May 1999  相似文献   

16.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

17.
The effect of grazer size manipulation on periphyton communities   总被引:5,自引:0,他引:5  
Summary We examined the effect of grazer size on periphyton biomass, size structure, and species compostion by removing the largest invertebrate grazers on artificial macrophytes planted in the littoral of Lake Memphremagog (Que-Vt). A series of exclosures with increasingly fine mesh prevented colonization by large invertebrates but allowed in smaller grazers. Oligochaetes, chironomids, and cladocerans effectively replaced snails so that total grazer biomass in the various treatments was not significantly different from the controls. With one exception, algal biomass, measured as chlorophyll a, did not differ significantly among the various treatments. However algal size and taxonomy were affected because the dominance of large blue-green colonies was apperantly related to the presence of large grazers. The results of the size manipulations were qualitatively similar to those induced in phytoplankton communities by size selective zooplankton grazing and are consistent with models based on general allometric equations.Contribution 181 of the Lake Memphremagog Project, Limnology Research Centre  相似文献   

18.
SUMMARY. 1. Field experiments were conducted to examine the impact of grazing invertebrates on periphyton biomass in twenty-one pools across three northern California coastal streams (U.S.A.): Big Sulphur Creek, the Rice Fork of the Eel River, and Big Canyon Creek. Periphyton accrual on artificial substrate tiles was compared in each stream between two treatments: those elevated slightly above the stream bottom to reduce access by grazers (= platforms) and those placed directly on the stream bottom to allow access by grazers (=controls).
2. Crawling invertebrate grazers (cased caddisflies and snails) were numerically dominant in each stream (86% of all grazers in Big Sulphur Creek, 61% in the Rice Fork, 84% in Big Canyon Creek). Platforms effectively excluded crawling grazers, but were less effective in excluding swimming mayfly grazers (Baetidae).
3. Periphyton biomass (as AFDM) on tiles was significantly lower on controls compared to platforms for the Rice Fork, an open-canopy stream, and Big Sulphur Creek, a stream with a heterogeneous canopy. In contrast, no grazer impact was found for Big Canyon Creek, a densely shaded stream. Here, extremely low periphyton biomass occurred for both treatments throughout the 60 day study.
4. The influence of riparian canopy on periphyton growth (i.e. accrual on platforms), grazer impact on periphyton, and grazer abundance was examined for Big Sulphur Creek. As canopy increased (15–98% cover), periphyton biomass on platforms decreased. In contrast, canopy had little influence on periphyton accrual on controls; apparently, grazers could maintain low periphyton standing crops across the full range of canopy levels. The abundance of one grazer species, the caddisfly Gumaga nigricula , was highest in open, sunlit stream pools; abundance of two other prominent grazers, Helicopsyche borealis (Trichoptera) and Centroptilum convexum (Ephemeroptera), however, was unrelated to canopy.  相似文献   

19.
The extent to which different grazers are functionally redundant has strong implications for the maintenance of community structure and function. Grazing by red urchins (Strongylocentrotus franciscanus) on temperate rocky reefs can initiate a switch from invertebrate or macroalgal dominance to an algal crust state, but can also cause increases in the density of molluscan mesograzers. In this study, we tested the hypothesis that red urchins and lined chitons (Tonicella spp.) are redundant in the maintenance of available space, defined as encrusting algae and bare rock. In a factorial field experiment replicated at three sites, we reduced the densities of urchins and chitons on subtidal rock walls for nine months. The effects of grazers were interpreted in the context of natural temporal variation by monitoring the benthic community one year before, during, and after grazer removal. The removal of each grazer in isolation had no effect on the epilithic community, but the removal of both grazers caused an increase in sessile invertebrates. The increase was due primarily to clonal ascidians, which displayed a large (∼75%) relative increase in response to the removal of both grazers. However, the observed non-additive responses to grazer removal were temporary and smaller than seasonal fluctuations. Our data demonstrate that urchins and chitons can be redundant in the maintenance of available space, and highlight the value of drawing conclusions from experimental manipulations within an extended temporal context.  相似文献   

20.
Algal biofuel has potential as a source of renewable fuel and a tool for wastewater remediation. Open algal bioreactors fertilized with wastewater can have net energy gain but are vulnerable to colonization by algal grazers. However, colonizing predaceous insects may limit grazer impacts on algae. Here, we investigate the effects of grazers, predators, and invading algae species on algal production and community structure in high-nutrient environments. First, we grew diverse algal assemblages in treated municipal wastewater in a greenhouse with Daphnia grazers and different insect predators that were added experimentally. When Daphnia were present without predators, they eliminated suspended algae. But, dragonfly larvae [Odonata: Libellulidae] and backswimmers [Hemiptera: Notonectidae], but not larval diving beetles [Coloeoptera: Dytiscidae], suppressed Daphnia allowing suspended algae to persist. Second, we grew Chlorella algae in field tanks that were open or protected from natural invertebrate colonization and half the tanks received wild-collected plankton in a factorial design. Mosquito larvae [Culex sp.] readily colonized open tanks and reduced algal mass and dissolved phosphorus concentrations. Colonist addition to open tanks shifted algal functional and taxonomic composition but did not impact suspended algal production. Our study indicates that large numbers of grazer individuals can rapidly colonize open bioreactors. Experimentally added and naturally colonizing grazers altered algal community structure and reduced algal standing crops but may also aid in nutrient removal from wastewater-fed bioreactors. Effective operation of open algal bioreactors must consider cultivated algae species’ vulnerability to competition and local grazers as well as the ability of potential predators to both naturally disperse into bioreactors and to control grazers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号