首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Osteoconductive materials play a critical role in promoting integration with surrounding bone tissue and resultant bone repair in vivo. However, the impact of 3D osteoconductive substrates coupled with soluble signals on progenitor cell differentiation is not clear. In this study, we investigated the influence of bone morphogenetic protein-2 (BMP-2) concentration on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) when seeded in carbonated apatite-coated polymer scaffolds. Mineralized scaffolds were more hydrophilic and adsorbed more BMP-2 compared to non-mineralized scaffolds. Changes in alkaline phosphatase (ALP) activity within stimulated hMSCs were dependent on the dose of BMP-2 and the scaffold composition. We detected more cell-secreted calcium on mineralized scaffolds at all time points, and higher BMP-2 concentrations resulted in increased ALP and calcium levels. RUNX2 and IBSP gene expression within hMSCs was affected by both substrate and soluble signals, SP7 by soluble factors, and SPARC by substrate-mediated cues. The present data indicate that a combination of apatite and BMP-2 do not simply enhance the osteogenic response of hMSCs, but act through multiple pathways that may be both substrate- and growth factor-mediated. Thus, multiple signaling strategies will likely be necessary to achieve optimal bone regeneration.  相似文献   

2.
Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.  相似文献   

3.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

4.
5.
Bisphosphonates (BPs) are known to affect bone homeostasis and also to have anti-angiogenic properties. Because of the intimate relationship between angiogenesis and osteogenesis, this study analysed the effects of Alendronate (AL) and Zoledronate (ZL) in the expression of endothelial and osteogenic genes on interacting endothelial and mesenchymal stem cells, an issue that was not previously addressed. Alendronate and ZL, 10−12–10−6 M, were evaluated in a direct co-culture system of human dermal microvascular endothelial cells (HDMEC) and human bone marrow mesenchymal stem cells (HMSC), over a period of 14 days. Experiments with the respective monocultures were run in parallel. Alendronate and ZL caused an initial dose-dependent stimulation in the cell proliferation in the monocultures and co-cultures, and did not interfere with their cellular organization. In HDMEC monocultures, the expression of the endothelial genes CD31, VE-cadherin and VEGFR2 was down-regulated by AL and ZL. In HMSC monocultures, the BPs inhibited VEGF expression, but up-regulated the expression of the osteogenic genes alkaline phosphatase (ALP), bone morphogenic protein-2 (BMP-2) and osteocalcin (OC) and, to a greater extent, osteoprotegerin (OPG), a negative regulator of the osteoclastic differentiation, and increased ALP activity. In co-cultured HDMEC/HMSC, AL and ZL decreased the expression of endothelial genes but elicited an earlier and sustained overexpression of ALP, BMP-2, OC and OPG, compared with the monocultured cells; they also induced ALP activity. This study showed for the first time that AL and ZL greatly induced the osteogenic gene expression on interacting endothelial and mesenchymal stem cells.  相似文献   

6.
该文主要探究Ghrelin对三氧化二砷(As2O3)导致的骨髓间充质干细胞(BMSCs)增殖和成骨分化的影响。BMSCs设为对照组、As2O3组、Ghrelin组和联合(As2O3+Ghrelin)组。MTT法检测细胞增殖能力;成骨诱导的第7天和第14天,Real-time PCR及Western blot分别检测成骨相关因子OPN、ALP、RUNX2的mRNA及蛋白表达;第21天,茜素红染色分析钙盐沉积情况。结果显示,细胞增殖能力Ghrelin组>对照组>联合组>As2O3组。与对照组比,As2O3组各因子表达均显著下调(P<0.05),Ghrelin组第14天OPN蛋白表达无显著变化,其余因子均上调(P<0.05);联合组与As2O3组比,第14天OPN基因表达和第7天ALP蛋白表达无显著差异,其余均显著上调(P<0.05)。钙盐沉积:Ghrelin组>对照组>联合组>As2O3组。提示0.5μmol/L As2O3抑制BMSCs增殖和成骨分化,600 ng/mL Ghrelin增强细胞增殖和成骨分化;且Ghrelin能减弱As2O3导致的BMSCs增殖和成骨分化抑制作用。  相似文献   

7.
Bei K  Du Z  Xiong Y  Liao J  Su B  Wu L 《Molecular biology reports》2012,39(9):8845-8851
To study and evaluate BMP7s functions in osteogenic differentiation of human periosteal cells in vitro. Human periosteal cells from adult tibia were collected and cultured as experimental samples. BMP7 was used to induce periosteal cells in the experiment group with common osteogenic medium. The proliferative activity of periosteal cells was detected by CCK-8. The potentials of osteogenic differentiation were demonstrated as follows: (1) realtime-PCR and ELISA to confirm the expression of the OC, ALP and OPN, (2) Colorimetry, ALP staining and Von Kossa staining were performed to identify ALP activity, ALP expression and calcium nodules, respectively. Based on the significant different expression of OC, ALP and OPN, BMP7 ability of osteogenic differentiation can be identified. ALP activity detection, calcium nodules staining and toluidine staining also provide the power evidence to support BMP7 can promote osteogenic differentiation of human periosteal cells in vitro. To human periosteal cells, BMP7 is a good inducer for osteogenic differentiation. Therefore, it's maybe a potential tool for clinical application.  相似文献   

8.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

9.
10.
目的:探讨在人骨髓间充质干细胞(h BMSCs)成骨分化过程中,不同浓度尿酸(UA)对骨形态形成蛋白-2(BMP-2)表达的影响。方法:以全骨髓贴壁培养法分离h BMSCs,将生长状态良好的第3代h BMSCs分为5组,分别为空白对照组(加入完全培养基)和成骨诱导组(加入成骨诱导液及含0 mmol/L、0.2 mmol/L、0.4 mmol/L、0.8 mmol/L尿酸的完全培养基)。连续干预诱导14d后,用倒置显微镜观察细胞形态的变化,通过观察茜素红染色情况及检测碱性磷酸酶(ALP)活性进行成骨情况的检测。RT-PCR技术检测各组细胞BMP-2 mR NA的表达情况。结果:第3代h BMSCs大多为形态单一的长梭形,呈旋涡状生长;干预诱导后的细胞逐渐变成不规则的立方形,局部形成团块状结节,以含尿酸浓度为0.8 mmol/L的成骨诱导培养基最为显著。连续干预14d后,空白对照组茜素红染色为阴性,而各成骨诱导组细胞茜素红染色结果为阳性,提示干预诱导后的细胞为成骨细胞。碱性磷酸酶活性随尿酸浓度的增加和干预时间的延长而增强(P<0.05)。RT-PCR检测结果显示,空白对照组无BMP-2 mR NA的表达。成骨诱导组随培养基中尿酸浓度的增加,BMP-2 mR NA表达逐渐增强,呈浓度依赖性(P<0.05)。结论:尿酸上调h BMSCs向成骨细胞分化过程中BMP-2 mR NA的表达。  相似文献   

11.
本研究通过检测中药材续断对家兔骨折模型愈合过程中与成骨密切相关基因的表达,以及血清中钙、磷含量变化,探讨其对骨折愈合的促进机制。构建家兔骨折缺损模型,术后按组分别给予续断和蒸馏水灌胃,并分别检测骨保护素(OPG)、骨保护素配体(OPGL)、局部转化生长因子β1(TGF-β1)和骨形态发生蛋白-2(BMP-2)的基因表达以及血清中Ca、P、碱性磷酸酶(ALP)含量。结果表明,续断治疗组中血钙、血磷和ALP的含量在灌胃第2周,第3周和第4周后均有明显升高,且在第三周时达到最大值。同时,OPG、TGF-β1、BMP-2三个基因在用续断治疗的不同时期呈现不同程度的表达上调,OPGL则在治疗早期表达下调。推测续断对骨折的治疗可能是通过调控OPG、OPGL、TGF-β1、BMP-2等基因在骨愈合不同阶段的表达量和血清中Ca、P、ALP的含量来促进骨骼生长。  相似文献   

12.
近年来骨组织工程技术迅猛发展,小鼠成肌细胞C2C12因其来源广泛等优点可望成为有效的种子细胞应用于组织工程. 然而,对于C2C12细胞的成骨分化机制仍需深入研究. 为了观察Sonic hedgehog(Shh)信号通路对骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9)诱导的C2C12细胞成骨分化的影响,构建过表达腺病毒Ad Shh,并作用于BMP9处理的C2C12细胞,检测碱性磷酸酶(alkaline phosphatase , ALP)的变化,茜素红S染色检测钙盐沉积,RT PCR检测Shh、骨桥蛋白(osteopontin,OPN)、骨钙素(osteocalcin,OCN)、Runx2、Dlx5、Id1和Id2基因表达,Western印迹检测Shh、OPN、OCN、Runx2和Dlx5的蛋白质表达,Micro-CT和H&E染色检测裸鼠皮下异位成骨包块情况. 结果表明,活化Shh信号通路可促进BMP9诱导的C2C12细胞早晚期成骨分化,以及裸鼠皮下异位成骨.体内外实验证明,Shh信号通路能促进BMP9诱导小鼠成肌细胞C2C12向成骨分化.  相似文献   

13.
Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2 + FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9 + FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.  相似文献   

14.
To evaluate the potential of three stem cells for cell therapy and tissue engineering applications, the biological behavior and osteogenic capacity of the newly introduced cord-blood-derived, unrestricted somatic stem cells (USSC) were compared with those of mesenchymal stem cells isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). There was no significant difference between the rates of proliferation of the three stem cells. During osteogenic differentiation, alkaline phosphatase (ALP) activity peaked on day 7 in USSC compared to BM-MSC which showed the maximum value of ALP activity on day 14. However, BM-MSC had the highest ALP activity and mineralization during osteogenic induction. In addition, AT-MSC showed the lowest capacity for mineralization during differentiation and had the lowest ALP activity on days 7 and 14. Although AT-MSC expressed higher levels of collagen type I, osteonectin and BMP-2 in undifferentiated state, but these genes were expressed higher in BM-MSC during differentiation. BM-MSC also expressed higher levels of ALP, osteocalcin and Runx2 during induction. Taking together, BM-MSC showed the highest capacity for osteogenic differentiation and hold promising potential for bone tissue engineering and cell therapy applications.  相似文献   

15.
董淑凤  史久慧  王屹博  丁超  杜杰 《生物磁学》2013,(36):7021-7024
目的:骨组织的形成是一个复杂的过程,受多种因素的影响,糖尿病所导致的持续高血糖对于成骨分化的影响机制尚不明确,以及在此分化过程中的各种细胞因子的作用机理仍不明了,现拟通过体外成骨诱导环境,观察高糖和碱性成纤维细胞生长因子(fibroblastgrowthfactorbFGF)对人骨髓间充质干细胞(humanmesenchymalstemcellshMSCs)成骨分化的影响。方法:hMSC在5.5mmol/L和25mmol/L葡萄糖浓度下培养6天,使用cck一8法测定各组细胞增殖情况;hMSC在两种糖浓度下成骨诱导28天,通过碱性磷酸酶(ALP)活性检测、茜素红染色、钙结节半定量检测,对比各组成骨分化活性;在两种糖浓度成骨诱导液中加入10ng/mlbFGF,使用RT—PCR技术检测各组细胞OCN、OPNmRNA表达差异。结果:高糖较正常糖浓度细胞增殖率下降,ALP活性降低,茜素红染色钙结节量减少,RT—PCR检测结果显示25mmol/L组OCN、OPNmRNA表达量低于5.5mmol/L组,加入bFGF后,25mmol/L组仍低于5.5mmol/L组,与未添加bFGF同葡萄糖组比较表达增加。结论:高糖使hMSC增殖能力下降,在成骨分化的过程中ALP活性降低,成骨相关基因OCN、OPN表达量下降,证明了高糖对hMSC成骨分化具有抑制作用,当加入bFGF后,改善了高糖对hMSC的抑制作用,提示糖尿病条件下高糖的存在是导致hMSC成骨分化能力下降的不利因素,同时初步证明了bFGF参与了成骨分化的过程,从而为在分子水平探讨糖尿病患者种植义齿骨结合形成相关机制奠定初步的基础..  相似文献   

16.
17.
A cell culture model of osteoblast differentiation was applied in our study of the effect of sialic acid on the osteogenesis by using the pre-osteoblast of MC3T3-E1 subclone 14 cells. Following the treatment of different concentrations of α2,3-neuraminidase, which specifically removed the α2-3 sialic acid from cell surface, a significant decrease of α2-3 sialic acid was detected with fluorescein isothiocyanate (FITC)-labeled Maackia amurensis lectin (MAL-II) by flow cytometry analysis. von Kossa staining showed that the bone mineralization decreased in MC3T3-E1 subclone 14 cells after the treatment of α2,3-neuraminidase for 2 weeks. However α2,3-neuraminidase did not affect the formation of osteoblasts in MC3T3-E1 subclone 14 cells, which was demonstrated by positive alkaline phosphatase (ALP)-staining. Characteristic biological markers and osteoblast-like cell-related factors of osteoblastic cells were also examined. Both RT-PCR and Western blot analysis demonstrated that the expression of bone sialoprotein (BSP), osteoprotegerin (OPG), and vitamin D receptor (VDR) were significantly decreased when α2-3 sialic acid expression decreased on the cell surface, while the expression of osteocalcin (OC) and osteopontin (OPN) remained unchanged. We propose a hypothesis that α2-3 sialic acid affects bone mineralization but not osteogenic differentiation.  相似文献   

18.
In this study, we demonstrate a stimulatory effect of tanshinone IIA isolated from the root of Salvia miltiorrhiza on the commitment of bi-potential mesenchymal precursor C2C12 cells into osteoblasts in the presence of bone morphogenetic protein (BMP)-2. At low concentrations, tanshinone IIA enhanced BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, and mRNA expression of BMPs. ALP induction was inhibited by the BMP antagonist noggin, suggesting that tanshinone IIA enhances the osteogenic activity of BMP signaling. Furthermore, considering the tanshinone IIA-mediated enhancement of BMP-2-stimulated Smad-Runx2 activities, tanshinone IIA could enhance the osteogenic activity of BMP-2 via acceleration of Smad-Runx2 activation. Additionally, pharmacologic inhibition studies suggest the possible involvement of p38 in the action of tanshinone IIA. The p38 inhibitor SB202190 strongly and dose-dependently inhibited tanshinone IIA-enhanced ALP induction. SB202190 also dose-dependently inhibited the tanshinone IIA-induced p38 activation and combined tanshinone IIA-BMP-2-induced Smad activation. In conclusion, tanshinone IIA enhances the commitment of C2C12 cells into osteoblasts and their differentiation through synergistic cross talk between tanshinone IIA-induced p38 activation and BMP-2-induced Smad activation. These activations could subsequently induce the activation of Runx2, which induces osteogenesis via regulation of the osteogenic factors BMP and ALP expression.  相似文献   

19.
20.
This study was performed to determine if a combination of previously undifferentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and exogenous bone morphogenetic protein-2 (BMP-2) delivered via heparin-conjugated PLGA nanoparticles (HCPNs) would extensively regenerate bone in vivo. In vitro testing found that the HCPNs were able to release BMP-2 over a 2-week period. Human BMMSCs cultured in medium containing BMP-2-loaded HCPNs for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) mRNA, while cells without BMP-2 expressed only ALP. In vivo testing found that undifferentiated BMMSCs with BMP-2-loaded HCPNs induce far more extensive bone formation than either implantation of BMP-2-loaded HCPNs or osteogenically differentiated BMMSCs. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of undifferentiated BMMSCs and BMP-2 delivery via HCPNs. Sung Eun Kim and Oju Jeon equally contributed to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号