首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Greater than 75% of the sooty mangabey monkeys at the Yerkes Regional Primate Research Center are naturally infected with SIV without any apparent clinical symptomology. On the other hand, experimental infection of rhesus macaques with SIV results in a clinical syndrome similar to human AIDS. These differences with regard to SIV infection prompted us to examine the natural immunosurveillance system of peripheral blood mononuclear cells (PBMC) from SIV-infected and uninfected monkeys of these two species. Phenotypic and functional studies of precursor and effector NK and LAK cells in the PBMC from these two species were carried out using monoclonal reagents, flow microfluorometry (FMF), and the standard in vitro 51Cr release assay against prototype K562 (NK sensitive) and RAJI (NK resistant, LAK susceptible) target cell lines. Data indicate that both NK and LAK cell activities in the PBMC of sooty mangabeys were significantly (P less than 0.01) greater than those in rhesus macaques. The predominant NK effector cells and LAK cell precursors were shown to be Leu 19-CD8+ in the PBMC of sooty mangabeys and Leu19+ CD8- in the PBMC of rhesus macaques as determined by panning depletion techniques and FMF analysis. On the other hand, the predominant LAK effector cells were found to be dual marked Leu 19+ CD8+ in rhesus macaques and Leu 19- CD8+ in sooty mangabeys. These qualitative and quantitative differences were not due to SIV infection of these two species since PBMC from both SIV-seropositive and virus-positive and SIV-sero-negative and virus-negative monkeys gave similar results. Moreover, of importance is the finding that the functional NK and LAK precursor cells are CD8+ and CD8- in sooty mangabeys and rhesus macaques, respectively. These data may have implications for the natural SIV/SMM virus-positive asymptomatic state of sooty mangabeys and may provide useful tools for tracing the ontogeny and lineage derivation of NK and LAK cells.  相似文献   

2.
Several investigators have demonstrated the ability of CD8+ T cells from HIV-1 infected humans and SIV infected rhesus macaques to inhibit viral replication in vitro. In this report we show that CD8+ cells from naturally SIV infected sooty mangabeys also have the ability to inhibit viral replication in vitro. In addition, initial experiments which seek to elucidate the mechanism and antigen specificity of CD8-mediated suppression are described.  相似文献   

3.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

4.
Sooty mangabeys are a natural host of simian immunodeficiency virus (SIV) that remain asymptomatic and do not exhibit increased immune activation or increased T-lymphocyte turnover despite sustained high levels of SIV viremia. In this study we asked whether an altered immune response to SIV contributes to the lack of immunopathology in sooty mangabeys as opposed to species with pathogenic lentivirus infection. SIV-specific cellular immune responses were investigated in a cohort of 25 sooty mangabeys with natural SIV infection. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses targeting a median of four SIV proteins were detected in all 25 mangabeys and were comparable in magnitude to those of 13 rhesus macaques infected with SIVmac251 for more than 6 months. As with rhesus macaques, Th2 ELISPOT responses to SIV were absent or >10-fold lower than the IFN-gamma ELISPOT response to the same SIV protein. The SIV-specific ELISPOT response was predominantly mediated by CD8+ T lymphocytes; the frequency of circulating SIV-specific CD8+ T lymphocytes ranged between 0.11% and 3.26% in 13 mangabeys. Functionally, the SIV-specific CD8+ T lymphocytes were cytotoxic; secreted IFN-gamma, tumor necrosis factor alpha, and macrophage inflammatory protein 1beta; and had an activated effector phenotype. Although there was a trend toward higher frequencies of SIV-specific CD8+ T lymphocytes in mangabeys with lower viral loads, a significant inverse correlation between SIV viremia and SIV-specific cellular immunity was not detected. The consistent detection of Th1-type SIV-specific cellular immune responses in naturally infected sooty mangabeys suggests that immune attenuation is neither a feature of nor a requirement for maintenance of nonpathogenic SIV infection in its natural host.  相似文献   

5.
Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4(+)CCR5(+) T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4(+) T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4(+) central memory T cells (T(CM) cells). CD4(+) T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4(+) T cell depletion. Sooty mangabey CD4(+) T(CM) cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4(+) T(CM) cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4(+) T cells favors the preservation of CD4(+) T cell homeostasis and promotes an AIDS-free status by protecting CD4(+) T(CM) cells from direct virus infection.  相似文献   

6.
Dysfunction of T lymphocytes is well documented in HIV-1-infected individuals; however, the mechanisms responsible for the noted dysfunction are not well understood. CD40L is an important costimulatory molecule that helps initiate immune responses, and there is controversy regarding whether or not expression of CD40L is compromised in HIV-1-infected individuals. We have utilized the SIV infection of experimentally infected (disease-susceptible) and naturally infected (disease-resistant) nonhuman primates as animal models of human AIDS to address this issue. Little is known concerning the expression of CD40L in nonhuman primates. Studies were conducted to determine the frequency, density, phenotype, and kinetics of CD40L expression by in vitro activated peripheral blood mononuclear cells (PBMCs) from different species of uninfected and SIV-infected monkeys. Data obtained show marked differences in the density and phenotypic lineage that expresses CD40L in lymphoid cells from the three species examined. However, no detectable differences were noted in the frequency and density of CD40L expression by in vitro activated lymphoid cells from uninfected and SIV-infected disease-susceptible rhesus macaques and seropositive as compared to seronegative disease-resistant sooty mangabeys. These data suggest that phenotypic expression of CD40L is not compromised due to SIV infection.  相似文献   

7.
Initial studies have revealed subtle differences in the T cell proliferative response to whole SIV antigen in the peripheral blood mononuclear cells (PBMC) from sooty mangabeys and rhesus macaques. Preliminary findings utilizing the cellular Western blot assay are described.  相似文献   

8.
HIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques. Although the nonpathogenic SIV infection of SMs induces the same pattern of mucosal target cell depletion observed during pathogenic HIV/SIV infections, the depletion in SMs occurs in the context of limited local and systemic immune activation and can be reverted if virus replication is suppressed by antiretroviral treatment. These results indicate that a profound depletion of mucosal CD4+ T cells is not sufficient per se to induce loss of mucosal immunity and disease progression during a primate lentiviral infection. We propose that, in the disease-resistant SIV-infected SMs, evolutionary adaptation to both preserve immune function with fewer mucosal CD4+ T cells and attenuate the immune activation that follows acute viral infection protect these animals from progressing to AIDS.  相似文献   

9.
Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo. We propose that chronic stimulation of pDCs by SIV and HIV in non-natural hosts may drive the unrelenting immune system activation and dysfunction underlying AIDS progression. Such a vicious cycle of continuous virus replication and immunopathology is absent in natural sooty mangabey hosts.  相似文献   

10.
Despite comparable levels of virus replication, simian immunodeficiency viruses (SIV) infection is non-pathogenic in natural hosts, such as sooty mangabeys (SM), whereas it is pathogenic in non-natural hosts, such as rhesus macaques (RM). Comparative studies of pathogenic and non-pathogenic SIV infection can thus shed light on the role of specific factors in SIV pathogenesis. Here, we determine the impact of target-cell limitation, CD8+ T cells, and Natural Killer (NK) cells on virus replication in the early SIV infection. To this end, we fit previously published data of experimental SIV infections in SMs and RMs with mathematical models incorporating these factors and assess to what extent the inclusion of individual factors determines the quality of the fits. We find that for both rhesus macaques and sooty mangabeys, target-cell limitation alone cannot explain the control of early virus replication, whereas including CD8+ T cells into the models significantly improves the fits. By contrast, including NK cells does only significantly improve the fits in SMs. These findings have important implications for our understanding of SIV pathogenesis as they suggest that the level of early CD8+ T cell responses is not the key difference between pathogenic and non-pathogenic SIV infection.  相似文献   

11.
Chronic immune activation is a key determinant of AIDS progression in HIV-infected humans and simian immunodeficiency virus (SIV)-infected macaques but is singularly absent in SIV-infected natural hosts. To investigate whether natural killer T (NKT) lymphocytes contribute to the differential modulation of immune activation in AIDS-susceptible and AIDS-resistant hosts, we compared NKT function in macaques and sooty mangabeys in the absence and presence of SIV infection. Cynomolgus macaques had significantly higher frequencies of circulating invariant NKT lymphocytes compared to both rhesus macaques and AIDS-resistant sooty mangabeys. Despite this difference, mangabey NKT lymphocytes were functionally distinct from both macaque species in their ability to secrete significantly more IFN-γ, IL-13, and IL-17 in response to CD1d/α-galactosylceramide stimulation. While NKT number and function remained intact in SIV-infected mangabeys, there was a profound reduction in NKT activation-induced, but not mitogen-induced, secretion of IFN-γ, IL-2, IL-10, and TGF-β in SIV-infected macaques. SIV-infected macaques also showed a selective decline in CD4+ NKT lymphocytes which correlated significantly with an increase in circulating activated memory CD4+ T lymphocytes. Macaques with lower pre-infection NKT frequencies showed a significantly greater CD4+ T lymphocyte decline post SIV infection. The disparate effect of SIV infection on NKT function in mangabeys and macaques could be a manifestation of their differential susceptibility to AIDS. Alternately, these data also raise the possibility that loss of anti-inflammatory NKT function promotes chronic immune activation in pathogenic SIV infection, while intact NKT function helps to protect natural hosts from developing immunodeficiency and aberrant immune activation.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIV(smm/mac) and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys.  相似文献   

13.
Mother-to-infant transmission (MTIT) of HIV is a serious global health concern, with over 300,000 children newly infected in 2011. SIV infection of rhesus macaques (RMs) results in similar rates of MTIT to that of HIV in humans. In contrast, SIV infection of sooty mangabeys (SMs) rarely results in MTIT. The mechanisms underlying protection from MTIT in SMs are unknown. In this study we tested the hypotheses that breast milk factors and/or target cell availability dictate the rate of MTIT in RMs (transmitters) and SMs (non-transmitters). We measured viral loads (cell-free and cell-associated), levels of immune mediators, and the ability to inhibit SIV infection in vitro in milk obtained from lactating RMs and SMs. In addition, we assessed the levels of target cells (CD4+CCR5+ T cells) in gastrointestinal and lymphoid tissues, including those relevant to breastfeeding transmission, as well as peripheral blood from uninfected RM and SM infants. We found that frequently-transmitting RMs did not have higher levels of cell-free or cell-associated viral loads in milk compared to rarely-transmitting SMs. Milk from both RMs and SMs moderately inhibited in vitro SIV infection, and presence of the examined immune mediators in these two species did not readily explain the differential rates of transmission. Importantly, we found that the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant SMs as compared to infant RMs despite robust levels of CD4+ T cell proliferation in both species. The difference between the frequently-transmitting RMs and rarely-transmitting SMs was most pronounced in CD4+ memory T cells in the spleen, jejunum, and colon as well as in central and effector memory CD4+ T cells in the peripheral blood. We propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of MTIT in SIV-infected SMs.  相似文献   

14.
Polymerase chain reaction techniques were used to identify simian immunodeficiency virus (SIV) SIVsmm gag sequences in genomic DNA isolated from peripheral blood mononuclear cells from naturally infected asymptomatic seropositive and seronegative sooty mangabeys (Cercocebus atys) and from experimentally infected but asymptomatic rhesus macaques (Macaca mulatta). The results indicate that most if not all SIV-seronegative mangabeys from the colony at the Yerkes Primate Center are in fact infected with SIVsmm despite their lack of humoral immune response, confirming previous immunological and virological observations made by our laboratory. Sequence analysis of these particular gag fragments from the mangabey revealed an average of 88% nucleotide sequence homology but 97% amino acid identity with the previously published sequence of the SIVsmmH4 clone. The significance of this finding relative to the asymptomatic state of SIV-infected mangabeys and disease-susceptible SIV-infected rhesus macaques is discussed.  相似文献   

15.
Host immune responses to SIV infection in sooty mangabeys are likely to be an important determinant of how such nonhuman primate species maintain asymptomatic lentivirus infection. We have previously described two patterns of asymptomatic SIV infection in sooty mangabeys: low viral loads with vigorous SIV-specific CTL activity in SIVmac239-infected sooty mangabeys, and high viral loads with generally weak or absent SIV-specific CTL activity in naturally infected sooty mangabeys. To define the specificity of the CTL response in SIV-infected mangabeys, we characterized CTL epitopes in two naturally infected and three SIVmac239-infected sooty mangabeys. Compared with that in SIVmac239-infected mangabeys, the yield of SIV-specific CTL clones was significantly lower in naturally infected sooty mangabeys. All CTL clones were phenotypically CD3+ CD8+, and lysis was MHC restricted. Seven SIV CTL epitopes were identified in five sooty mangabeys: one in Gag and three each in Nef and Envelope (Env). The CTL epitopes mapped to conserved regions in the SIV genome and were immunodominant. Several similar or identical CTL epitopes were recognized by both naturally infected and SIVmac239-infected mangabeys that shared class I MHC alleles. To our knowledge, this is the first report of SIV-specific CTL epitopes in sooty mangabeys. Longitudinal studies of viral load and sequence variation in CTL epitopes may provide useful information on the role of CTL in control or persistence of SIV infection in sooty mangabeys.  相似文献   

16.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections lead to AIDS in humans and rhesus macaques (RM), while they are asymptomatic in species naturally infected with SIV, such as chimpanzees, sooty mangabeys (SM), and African green monkeys (AGM). Differential CD4(+) T-cell apoptosis may be responsible for these species-specific differences in susceptibility to disease. To identify factors that influence the different apoptotic responses of these species, we analyzed virus-infected human and nonhuman primate peripheral blood mononuclear cells (PBMC). We found that the apoptotic factor TRAIL was present at higher levels in human and RM PBMC cultures and was mediating, at least in part, CD4(+) T-cell apoptosis in these cultures. The species-specific increase in TRAIL and death receptor expression observed with cultures also occurred in vivo in SIV-infected RM but not in SIV-infected SM. In human and RM myeloid immature dendritic cells and macrophages, the virus-induced expression of TRAIL and other interferon-inducible genes, which did not occur in the same cells from chimpanzee, SM, and AGM, was Tat dependent. Our results link the differential induction of TRAIL in human and nonhuman primate cells to species-specific differences in disease susceptibility.  相似文献   

17.
It has been established that many simian immunodeficiency virus (SIV) isolates utilize the orphan receptors GPR15 and STRL33 about as efficiently as the chemokine receptor CCR5 for entry into target cells. Most studies were performed, however, with coreceptors of human origin. We found that SIV from captive rhesus macaques (SIVmac) can utilize both human and simian CCR5 and GPR15 with comparable efficiencies. Strikingly, however, only human STRL33 (huSTRL33), not rhesus macaque STRL33 (rhSTRL33), functioned efficiently as an entry cofactor for a variety of isolates of SIVmac and SIV from sooty mangabeys. A single amino acid substitution of S30R in huSTRL33 impaired coreceptor activity, and the reverse change in rhSTRL33 greatly increased coreceptor activity. In comparison, species-specific sequence variations in N-terminal tyrosines in STRL33 had only moderate effects on SIV entry. These results show that a serine residue located just outside of the cellular membrane in the N terminus of STRL33 is critical for SIV coreceptor function. Interestingly, STRL33 derived from sooty mangabeys, a natural host of SIV, also contained a serine at the corresponding position and was used efficiently as an entry cofactor. These results suggest that STRL33 is not a relevant coreceptor in the SIV/macaque model but may play a role in SIV replication and transmission in naturally infected sooty mangabeys.  相似文献   

18.
Lymphoid tissue immunopathology is a characteristic feature of chronic HIV/SIV infection in AIDS-susceptible species, but is absent in SIV-infected natural hosts. To investigate factors contributing to this difference, we compared germinal center development and SIV RNA distribution in peripheral lymph nodes during primary SIV infection of the natural host sooty mangabey and the non-natural host pig-tailed macaque. Although SIV-infected cells were detected in the lymph node of both species at two weeks post infection, they were confined to the lymph node paracortex in immune-competent mangabeys but were seen in both the paracortex and the germinal center of SIV-infected macaques. By six weeks post infection, SIV-infected cells were no longer detected in the lymph node of sooty mangabeys. The difference in localization and rate of disappearance of SIV-infected cells between the two species was associated with trapping of cell-free virus on follicular dendritic cells and higher numbers of germinal center CD4+ T lymphocytes in macaques post SIV infection. Our data suggests that fundamental differences in the germinal center microenvironment prevent productive SIV infection within the lymph node germinal centers of natural hosts contributing to sustained immune competency.  相似文献   

19.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.  相似文献   

20.
Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号