共查询到20条相似文献,搜索用时 0 毫秒
1.
Genes for human U4 small nuclear RNA 总被引:10,自引:0,他引:10
2.
Genes and pseudogenes for rat U3A and U3B small nuclear RNA 总被引:11,自引:0,他引:11
3.
4.
Thilo Sascha Lange Michael Ezrokhi Anton V. Borovjagin Rafael Rivera-Len Melanie T. North Susan A. Gerbi 《Molecular biology of the cell》1998,9(10):2973-2985
The Nucleolar Localization Elements (NoLEs) of Xenopus laevis U3 small nucleolar RNA (snoRNA) have been defined. Fluorescein-labeled wild-type U3 snoRNA injected into Xenopus oocyte nuclei localized specifically to nucleoli as shown by fluorescence microscopy. Injection of mutated U3 snoRNA revealed that the 5′ region containing Boxes A and A′, known to be important for rRNA processing, is not essential for nucleolar localization. Nucleolar localization of U3 snoRNA was independent of the presence and nature of the 5′ cap and the terminal stem. In contrast, Boxes C and D, common to the Box C/D snoRNA family, are critical elements for U3 localization. Mutation of the hinge region, Box B, or Box C′ led to reduced U3 nucleolar localization. Results of competition experiments suggested that Boxes C and D act in a cooperative manner. It is proposed that Box B facilitates U3 snoRNA nucleolar localization by the primary NoLEs (Boxes C and D), with the hinge region of U3 subsequently base pairing to the external transcribed spacer of pre-rRNA, thus positioning U3 snoRNA for its roles in rRNA processing. 相似文献
5.
6.
In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis. 下载免费PDF全文
E Caffarelli M Arese B Santoro P Fragapane I Bozzoni 《Molecular and cellular biology》1994,14(5):2966-2974
It was recently shown that a new class of small nuclear RNAs is encoded in introns of protein-coding genes and that they originate by processing of the pre-mRNA in which they are contained. Little is known about the mechanism and the factors involved in this new type of processing. The L1 ribosomal protein gene of Xenopus laevis is a well-suited system for studying this phenomenon: several different introns encode for two small nucleolar RNAs (snoRNAs; U16 and U18). In this paper, we analyzed the in vitro processing of these snoRNAs and showed that both are released from the pre-mRNA by a common mechanism: endonucleolytic cleavages convert the pre-mRNA into a precursor snoRNA with 5' and 3' trailer sequences. Subsequently, trimming converts the pre-snoRNAs into mature molecules. Oocyte and HeLa nuclear extracts are able to process X. laevis and human substrates in a similar manner, indicating that the processing of this class of snoRNAs relies on a common and evolutionarily conserved mechanism. In addition, we found that the cleavage activity is strongly enhanced in the presence of Mn2+ ions. 相似文献
7.
8.
9.
10.
11.
In animals, replication-dependent histone genes are expressed in dividing somatic cells during S phase to maintain chromatin condensation. Histone mRNA 3'-end formation is an essential regulatory step producing an mRNA with a hairpin structure at the 3'-end. This requires the interaction of the U7 small nuclear ribonucleoprotein particle (snRNP) with a purine-rich spacer element and of the hairpin-binding protein with the hairpin element, respectively, in the 3'-untranslated region of histone RNA. Here, we demonstrate that bona fide histone RNA 3' processing takes place in Xenopus egg extracts in a reaction dependent on the addition of synthetic U7 RNA that is assembled into a ribonucleoprotein particle by protein components available in the extract. In addition to reconstituted U7 snRNP, Xenopus hairpin-binding protein SLBP1 is necessary for efficient processing. Histone RNA 3' processing is not affected by addition of non-destructible cyclin B, which drives the egg extract into M phase, but SLBP1 is phosphorylated in this extract. SPH-1, the Xenopus homologue of human p80-coilin found in coiled bodies, is associated with U7 snRNPs. However, this does not depend on the U7 RNA being able to process histone RNA and also occurs with U1 snRNPs; therefore, association of SPH1 cannot be considered as a hallmark of a functional U7 snRNP. 相似文献
12.
13.
In trypanosomatid protozoa, all mRNAs obtain identical 5'-ends by trans-splicing of the 5'-terminal 39 nucleotides of a small spliced leader RNA to appropriate acceptor sites in pre-mRNA. Although this process involves spliceosomal small nuclear (sn) RNAs, it is thought that trypanosomatids do not contain a homolog of the cis-spliceosomal U1 snRNA. We show here that a trypanosomatid protozoon, Crithidia fasciculata, contains a novel small RNA that displays several features characteristic of a U1 snRNA, including (i) a methylguanosine cap and additional 5'-terminal modifications, (ii) a potential binding site for common core proteins that are present in other trans-spliceosomal ribonucleoproteins, (iii) a U1-like 5'-terminal sequence, and (iv) a U1-like stem/loop I structure. Because trypanosomatid pre-mRNAs do not appear to contain cis-spliced introns, we argue that this previously unrecognized RNA species is a good candidate to be a trans-spliceosomal U1 snRNA. 相似文献
14.
15.
We have used comparative sequence analysis and deletion analysis to examine the secondary structure of the U5 small nuclear RNA (snRNA), an essential component of the pre-mRNA splicing apparatus. The secondary structure of Saccharomyces cerevisiae U5 snRNA was studied in detail, while sequences from six other fungal species were included in the phylogenetic analysis. Our results indicate that fungal U5 snRNAs, like their counterparts from other taxa, can be folded into a secondary structure characterized by a highly conserved stem-loop (stem-loop 1) that is flanked by a moderately conserved internal loop (internal loop 1). In addition, several of the fungal U5 snRNAs include a novel stem-loop structure (ca. 30 nucleotides) that is adjacent to stem-loop 1. By deletion analysis of the S. cerevisiae snRNA, we have demonstrated that the minimal U5 snRNA that can complement the lethal phenotype of a U5 gene disruption consists of (i) stem-loop 1, (ii) internal loop 1, (iii) a stem-closing internal loop 1, and (iv) the conserved Sm protein binding site. Remarkably, all essential, U5-specific primary sequence elements are encoded by a 39-nucleotide domain consisting of stem-loop 1 and internal loop 1. This domain must, therefore, contain all U5-specific sequences that are essential for splicing activity, including binding sites for U5-specific proteins. 相似文献
16.
Developmental expression of fibrillarin and U3 snRNA in Xenopus laevis. 总被引:10,自引:0,他引:10
M Caizergues-Ferrer C Mathieu P Mariottini F Amalric F Amaldi 《Development (Cambridge, England)》1991,112(1):317-326
Fibrillarin is one of the protein components that together with U3 snRNA constitute the U3 snRNP, a small nuclear ribonucleoprotein particle involved in ribosomal RNA processing in eucaryotic cells. Using an antifibrillarin antiserum for protein detection and a fibrillarin cDNA and a synthetic oligonucleotide complementary to U3 snRNA as hybridization probes, the expression of these two components has been studied during Xenopus development. Fibrillarin mRNA is accumulated early in oogenesis, like many other messengers, and translated during oocyte growth. Fibrillarin protein is thus progressively accumulated throughout oogenesis to be assembled with U3 snRNA and used for ribosome production in the amplified nucleoli. After fertilization, the amount of U3 snRNA decreases while the maternally accumulated fibrillarin mRNA is maintained and utilized to produce more protein. After the mid-blastula transition, stored fibrillarin is assembled with newly synthesized U3 snRNA and becomes localized in the prenucleolar bodies and reforming nucleoli. 相似文献
17.
18.
《The Journal of cell biology》1984,99(3):1140-1144
The processing and ribonucleoprotein assembly of U4 small nuclear RNA has been investigated in HeLa cells. After a 45-min pulse label with [3H]uridine, a set of apparently cytoplasmic RNAs was observed migrating just behind the gel electrophoretic position of mature U4 RNA. These molecules were estimated to be one to at least seven nucleotides longer than mature U4 RNA. They reacted with Sm autoimmune patient sera and a monoclonal Sm antibody, indicating their association with proteins characteristic of small nuclear ribonucleoprotein complexes. The same set of RNAs was identified by hybrid selection of pulse-labeled RNA with cloned U4 DNA, confirming that these are U4 RNA sequences. No larger nuclear precursors of these RNAs were detected. Pulse-chase experiments revealed a progressive decrease in the radioactivity of the U4 precursor RNAs coincident with an accumulation of labeled mature U4 RNA, confirming a precursor-product relationship. 相似文献
19.
20.
Mycoplasma capricolum, a parasitic prokaryote, contains several small stable RNAs, besides rRNAs and tRNAs. One of them, designated MCS4 RNA (125 nucleotides in length), has been isolated and sequenced. This RNA is abundant in the cell, and is encoded by two genes. Unexpectedly, MCS4 RNA has been found to reveal extensive sequence similarity to eukaryotic U6 snRNAs. This finding suggests that MCS4 and U6 snRNAs are derived from a common ancestral RNA that has existed before the divergence of prokaryotes and eukaryotes. 相似文献