首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of isolated cell envelopes from purified infectious elementary (EB) of Chlamydia psittaci to sodium carbonate-bicarbonate buffer at pH 10 plus ethylenediaminetetraacetate (EDTA) results in partial solubilization of the total protein. The released materials represent 20% of the dry weight, 16% of the total protein, 40% of the total carbohydrate, and 9% of the total lipid of the cell envelopes. Sucrose density gradient centrifugation, and Sephadex G-200, Sepharose 4B, or diethylaminoethyl-cellulose column chromatography, reveal a protein-carbohydrate-lipid complex of several hundred thousand molecular weight that contains 50% protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated EB cell envelopes reveals two major protein bands, A and B, with estimated molecular masses of approximately 85,000 and 53,000, respectively, both of which also stain for the presence of carbohydrate and lipid. Gel electrophoresis of the protein-carbohydrate-lipid complex reveals two protein bands, C and D, with estimated molecular weights of approximately 17,000 and 13,000, respectively, which contain lipid and a small amount of carbohydrate; bands A and B are not present in the complex. Gel electrophoresis of the cell envelope residues after extraction of the complex with alkali and EDTA shows a single main band, corresponding to the position of band B, which contains protein, carbohydrate, and lipid; band A is completely missing. B and A is believed to be a component of the complex, which is split into two subunits on alkali solubilization.  相似文献   

2.
Amino groups of cell envelope proteins, lipids, and lipopolysaccharides cannot be labeled in intact cells of Salmonella typhimurium G 30 by using 5-dimethylaminonaphthalene-1-sulfonylchloride incorporated in lecithin-cholesterol vesicles. However, application of membrane-interacting agents like tris(hydroxymethyl)aminomethane (Tris)-hydrochloride, ethylenediaminetetraacetate (Na salt) (EDTA), divalent cations, and sublethal doses of the cationic antibacterial agents polymyxin B and chlorhexidine induced specific fluorescent labeling of envelope proteins and lipids but not of cytoplasmic compounds, with the exception of a soluble protein with a molecular weight of 46,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with Tris-hydrochloride buffer produced labeling of the heat-modifiable protein B/B(+) and of proteins with molecular weights of 26,000, 22,000, and below 17,000. A combination of Tris-hydrochloride and EDTA induced additional dansylation of the major protein A and of proteins of molecular weights 80,000, 60,000, and 44,000. Polymyxin B and chlorhexidine caused similar labeling patterns. In every case, except with divalent cation treatment, protein B/B(+) was the most prominently labeled species. Phosphatidylethanolamine was dansylated up to 30%. Lipopolysaccharide was not reactive under any condition or treatment. In addition, the peptidoglycan-bound lipoprotein did not react with dansylchloride in either intact or Tris-hydrochloride-treated cells. The results are discussed with regard to a possible localization of labeled and unlabeled compounds of the cell envelope on the basis of a model placing cell envelope amino groups into ion-ion interactions with anionic components of other envelope compounds like phosphate and carboxyl groups.  相似文献   

3.
Interacting egg envelope and sperm surface components were identified for Xenopus laevis using blotting methods. Sperm were extracted with sodium dodecyl sulfate (SDS), the extracted proteins separated by gel electrophoresis and blotted, and the blots treated with 125I-labeled heat solubilized envelopes. The converse experiment was also performed where envelope components were separated by gel electrophoresis, blotted, and the blots treated with 125I-labeled sperm components. Blotted sperm components with apparent molecular weights of 14K, 19K, 25K, and 35K selectively bound the solubilized envelopes. All of the envelope binding components were found to be localized on the sperm surface by radioiodinating intact sperm using Iodo-Gen. The blotted egg envelope component with an apparent molecular weight of 37K selectively bound to solubilized sperm components, and this binding was due to the protein moiety of the glycoprotein. 125I-labeled heat solubilized envelopes from unfertilized and fertilized eggs showed the same pattern of binding to blotted sperm components. Selected sulfated carbohydrates (fucoidan, dextran sulfate, and heparin, but not chondroitin sulfate) inhibited fertilization and binding of 125I-labeled heat solubilized envelopes to blotted sperm extract. Thus, the binding of heat solubilized envelopes to electrophoretically separated and blotted sperm proteins may reflect cellular interactions.  相似文献   

4.
Abstract Monoclonal antibodies raised against single serotype components of a Pseudomonas aeruginosa vaccine have been shown to bind to the O antigen region of lipopolysaccharide (LPS). Outer membrane (OM) proteins, prepared by detergent treatment of envelope fractions and by EDTA/sonication treatment of whole cells, were separated on sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electrophoretically transferred to nitrocellulose membrane and reacted with LPS-specific monoclonal antibodies. The patterns produced revealed that many of the protein bands were in fact protein-LPS complexes.  相似文献   

5.
Cell envelopes from the Gram-negative staining but phylogenetically Gram-positive rumen anaerobe Selenomonas ruminantium OB268 contained a major 42 kDa heat modifiable protein. A similarly sized protein was present in the envelopes of Selenomonas ruminantium D1 and Selenomonas infelix. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of Triton X-100 extracted cell envelopes from S. ruminantium OB268 showed that they consisted primarily of the 42 kDa protein. Polyclonal antisera produced against these envelopes cross-reacted only with the 42 kDa major envelope proteins in both S. ruminantium D1 and S. infelix, indicating a conservation of antigenic structure among each of the major envelope proteins. The N-terminus of the 42 kDa S. ruminantium OB268 envelope protein shared significant homology with the S-layer (surface) protein from Thermus thermophilus, as well as additional envelope proteins containing the cell surface binding region known as a surface layer-like homologous (SLH) domain. Thin section analysis of Triton X-100 extracted envelopes demonstrated the presence of an outer bilayer over-laying the cell wall, and a regularly ordered array was visible following freeze-fracture etching through this bilayer. These findings suggest that the regularly ordered array may be composed of the 42 kDa major envelope protein. The 42 kDa protein has similarities with regularly ordered outer membrane proteins (rOMP) reported in certain Gram-negative and ancient eubacteria.  相似文献   

6.
Cell envelopes (cell wall and cell membrane) from aerobically grown cells of Rhodopseudomonas spheroides were isolated and purified by a combination of differential centrifugation and centrifugation through 40% sucrose. Cell envelope protein from aerobically grown cells was resolved by dodecyl sulphate-polyacrylamide gel electrophoresis. Biochemical characterization of selected envelope membrane proteins demonstrated heterogeneity between different protein species. Amino acid analyses of individual proteins revealed between 50–60 mole% nonpolar residues.Envelope membranes derived from anaerobically grown cells were also isolated and purified by a combination of differential centrifugation, column chromatography on Sepharose 2B, and centrifugation in 40% sucrose. The dodecyl sulphate-polyacrylamide gel patterns of anaerobic and aerobic envelope membrane proteins were very similar and the results suggest a common protein structure.  相似文献   

7.
Cell envelopes from Pseudomonas aeruginosa strains resistant to polymyxin were compared with cell envelopes from polymyxin-sensitive strains as to their content of total protein, carbohydrate, and 2-keto-3-deoxyoctonate and as to their protein composition as determined by slab polyacrylamide gel electrophoresis. The cell envelopes of the polymyxin-resistant strains had reduced amounts of lipopolysaccharide, as indicated a reduction in both carbohydrate and 2-keto-3-deoxyoctonate concentrations, and a greatly altered protein composition as shown by polyacrylamide gel electrophoresis. There was a quantitative increase in total cell envelop protein in these strains. However, those protein bands identified as being major outer membrane proteins upon polyacrylamide gel electrophoresis of separated outer and cytoplasmic membranes were reduced greatly in concentration in the polymyxin-resistant cell envelopes. Thus, it appears that polymyxin resistance in these strains is associated with the alteration of the outer membrane through a loss of lipopolysaccharide and outer membrane proteins.  相似文献   

8.
EDTA-induced outer membrane losses from whole cells of wild-type Escherichia coli (O111:B4) and several lipopolysaccharide (LPS) mutants derived from E. coli K-12 D21 were analyzed. EDTA treatment induced losses of LPS (up to 40%), outer membrane proteins OmpA, OmpF/C, and lipoprotein, periplasmic proteins, and phosphatidylethanolamine. The extent of these releases was strain specific. Successively more EDTA was necessary to induce these losses from strains containing LPS with increasing polysaccharide chain length. An additional heat shock immediately following the EDTA treatment had no effect on LPS release, but it decreased the release of outer membrane proteins and reduced the leakage of periplasmic proteins, suggesting that the temporary increase in outer membrane "permeability" caused by Ca2+-EDTA treatment was rapidly reversed by the redistribution of outer membrane components, a process which is favored by a mild heat shock. The fact that the material released from E. coli C600 showed a constant ratio of lipoprotein, OmpA, and phosphatidylethanolamine at all EDTA concentrations tested suggests that the material is lost as specific outer membrane patches. The envelope alterations caused by EDTA did not result in cell lysis.  相似文献   

9.
A method of separating envelope proteins by two-dimensional polyacrylamide gel electrophoresis is described. Escherichia coli envelopes (inner and outer membranes) were prepared by French pressing and washed by repeated centrifugation. Membrane proteins were solubilized with guanidine thiocyanate and were dialyzed against urea prior to two-dimensional electrophoretic analysis. The slab gel apparatus and conditions were similar to the technique developed by Metz and Bogorad (1974) for the separation of ribosomal proteins. This separation occurs in 8 M urea for the first dimension and in 0.2% sodium dodecyl sulfate for the second dimension. The technique separates about 70 different membrane proteins in a highly reproducible fashion according to both intrinsic charge and molecular weight. Some examples of alterations in the membrane protein pattern are demonstrated. These alterations are caused by a mutation affecting a sugar transport system and by growth in the presence of D-fucose, inducer of the transport system. A further example of membrane protein changes introduced by growth at the nonpermissive temperature of a temperature-sensitive cell division mutant is shown. Finally, it is demonstrated that the major outer membrane component of Escherichia coli K-12 contains more than four proteins of similar molecular weight.  相似文献   

10.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

11.
Cell envelopes prepared from smooth and rough strains of Brucella were characterized on the basis of lipopolysaccharide and protein content. The action of three kinds of detergents on Brucella cell envelopes and Escherichia coli control cell envelopes was examined on the basis of the proteins and lipopolysaccharides that were extracted. As compared with those of E. coli, Brucella cell envelopes were resistant to nonionic detergents. Zwittergents 312 and 316 were most effective in extracting E. coli cell envelopes, and Zwittergent 316 was most effective in extracting Brucella cell envelopes. Sarkosyl extracted proteins but extracted only trace amounts of lipopolysaccharides from cell envelopes of both bacteria. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the Sarkosyl-resistant proteins revealed a composition similar to that of the proteins exposed on the surfaces of viable cells, as determined by the lactoperoxidase-125I radioiodination method. EDTA, with either Tris-HCl or Tris-HCl-Triton X-100, did not have detectable effects on Brucella cell envelopes. Ultracentrifugation of purified lipopolysaccharides in detergents and EDTA demonstrate that, in contrast to that of E. coli, Brucella lipopolysaccharide was not stabilized by divalent cations. Sarkosyl was ineffective in dispersing lipopolysaccharides, whereas the action of Zwittergents was related to the length of their alkyl chains.  相似文献   

12.
The membrane envelope enclosing the bacteroids in soybean root nodules is shown by ultrastructural and biochemical studies to be derived from, and to retain the characteristics of, the host cell plasma membrane. During the early stages of the infection process, which occurs through an invagination, Rhizobium becomes surrounded by the host cell wall and plasma membrane, forming the infection thread. The cell wall of the infection thread is degraded by cellulolytic enzyme(s), leaving behind the enclosed plasma membrane, the membrane envelope. Cellulase activity in young nodules increases two- to threefold as compared to uninfected roots, and this activity is localized in the cell wall matrix of the infection threads. Membrane envelopes were isolated by first preparing bacteroids enclosed in the envelopes on a discontinuous sucrose gradient followed by passage through a hypodermic needle, which released the bacteroids from the membranes. This membrane then sedimented at the interface of 34--45% sucrose (mean density of 1.14 g/cm3). Membranes were characterized by phosphotungstic acid (PTA)-chromic acid staining. ATPase activity, and localization, sensitivity to nonionic detergent Nonidet P-40 (NP-40) and sodium dodecyl sulfate (SDS) gel electrophoresis. These analyses revealed a close similarity between plasma membrane and the membrane envelope. Incorporation of radioactive amino acids into the membrane envelope proteins was sensitive to cycloheximide, suggesting that the biosynthesis of these proteins is primarily under host-cell control. No immunoreactive material to leghemoglobin antibodies was found inside or associated with the isolated bacteroids enclosed in the membrane envelope, and its location is confined to the host cell cytoplasmic matrix.  相似文献   

13.
The effects of ethylenediamine tetraacetic acid (EDTA) and related chelating agents on the sensitivity of isolated cell envelopes of some β-lactamase +ve and -ve strains of Gram negative bacteria have been investigated. Envelopes from Pseudomonas aeruginosa (especially strain NCTC 1999) contained the greatest amounts of Mg2+ and were the most sensitive to these agents in terms of (i) lysis, (ii) release of cations, (iii) release of readily extractable lipid. Cyclohexane—1,2, -diamine-tetraacetic acid was the most effective chelator, followed by EDTA and N -hydroxy-ethylethylenediamine triacetic acid, with nitriloacetic acid and iminodiacetic acid having little effect. A lysozyme–Tris–EDTA system also caused lysis of P. aeruginosa envelopes. The sensitivity of whole cells of the various strains to some β-lactam antibiotics and other antibacterial agents has been carried out and the basis of sensitivity or resistance in relation to drug destruction and the above envelope composition discussed.  相似文献   

14.
Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane beta-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.  相似文献   

15.
A set of non-histone proteins has been identified in the nuclei from liver, brain, spleen and testis tissues of the rat. Following moderate digestion of thoroughly washed nuclei with DNase I or micrococcal nuclease, EDTA was added to 5 mM to the reaction mixture and the preparation centrifuged. We found that the supernatant contained a limited amount of non-histone proteins (fraction S1). Sodium dodecyl sulfate (SDS) gel electrophoresis revealed S1 to be composed of a remarkably simple set of proteins resolved into four groups (A-D) each possessing closely spaced doublets or a triplet. Their molecular weights were A, 76 100-80 000; B, 48 200-49 500; C, 44 500-45 200 and D, 39 500-41 500. The yield suggested that these proteins were structural constituents; however, they did not coincide with the known structural proteins of the cell nucleus. Two-dimensional gel electrophoresis further resolved each of the SDS bands into as many as nine spots, according to various charges. Some were labelled with [32P]orthophosphate in vivo, or with [gamma-32P]ATP and purified nuclear protein kinase NII in vitro. The released proteins B-D had fairly constant relative molar ratios at various times of digestion, thereby indicating possible localizations at similar sites in the nucleus. The kinetic data together with the aggregation property at neutral pH values and the solubility in 5 mM EDTA suggest that proteins B-D constitute a group of proteins that have several common characteristics.  相似文献   

16.
Disc-electrophoresis of E. coli envelope proteins on SDS acrylamide gels reproducibly revealed up to 50 distinct polypeptide bands. Corresponding molecular weights ranged from 105,000 to 20,000 daltons or less. Major bands corresponded to molecular weights of 73,000, 48,000, 36,000 and 30,000 with the latter constituting up to 20% of the total envelope protein depending upon the method of isolation. Minimum levels of detection using stained gels equaled 0.25 μg protein or 1% of total sample analyzed; for a polypeptide of molecular weight 40,000 daltons this was calculated to be equivalent to 1,200 molecules per cell envelope. In envelopes from a cetB? mutant strain (refractory to colicin E2), an additional band, constituting up to 5% of the total envelope protein was present. The molecular weight of this protein, which was maximally present in wild type envelopes in only trace amounts, is 44,000 daltons, indicating a cellular concentration of approximately 6 × 103 molecules per envelope. This new band was not affected by heating envelope preparations to 100° prior to electrophoresis, but was largely eliminated by washing isolated envelopes in low ionic strength buffer, or by pre-incubating cells with trypsin prior to preparation of envelopes. Treatment of isolated envelopes with Triton X-100, which preferentially releases inner membrane proteins from the envelope (18), resulted in the extraction of a preponderance of the high molecular weight polypeptides, including the 44,000 dalton protein from envelopes of the mutant. The major polypeptides of the envelope and the low molecular weight components were not extracted by Triton X-100. The properties of the 44,000 dalton protein indicated that it is relatively loosely associated with the surface envelope and may be exposed on the external surface of the cytoplasmic membrane. Possible explanations for the appearance of this protein in mutant strains and its relationship to the inability of these to respond, specifically to surface bound colicin E2, will be discussed. Extensive analysis of envelopes from recA? mutants was also carried out and revealed an unusual amount of variation in polypeptide profiles obtained from different preparations. However, no consistent quantitative or qualitative difference between recA and rec+ strains was obtained. In recA, cetB double mutants, the increased level of the 44,000 dalton polypeptide was identical to that found in the rec+, cetB mutant.  相似文献   

17.
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab E2-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS--albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small non-nuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex.  相似文献   

18.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

19.
When the envelope fraction of Escherichia coli was treated by trypsin, about 40% of total envelope proteins were removed from the fraction without changing its phospholipid content. Analysis of envelope proteins by acrylamide gel electrophoresis in 0.5% sodium dodecyl sulfate revealed that trypsin treatment was very specific; one of the major proteins (molecular weight, 38,000) and all proteins of molecular weight greater than 70,000 were completely removed by the treatment. On the other hand, three other major proteins were found to be resistant to the treatment, including protein Y, which was previously shown to be related to deoxyribonucleic acid replication. The trypsin treatment of the envelope fractions composed of a five electron-dense layered structure formed vesicles with a triple-layered membrane (two electron-dense layers). Pronase treatment of the envelope fraction removed about 60% of the envelope proteins without changing its phospholipid content. A major protein of molecular weight of 58,000 was found to be the only protein resistant to the Pronase treatment. Application of these treatments is useful for purification and structural studies of envelope proteins.  相似文献   

20.
Cells of Pseudomonas aeruginosa became resistant to the lytic effect of ethylenediametetraacetate (EDTA) when grown in a Mg(2+)-deficient medium. To correlate ultrastructural changes in the cell wall associated with the shift to EDTA-resistance, a freeze-etch study was performed. Upon fracturing, the outer cell wall membrane split down the hydrophobic center to reveal the outer (concave) and inner (convex) layers. The concave cell wall layer of EDTA-sensitive cells grown in Mg(2+)-sufficient medium contained spherical units resting on an underlying smooth support layer. Upon EDTA treatment, approximately one-half of these spherical units were extracted. Cells grown in Mg(2+)-deficient medium were resistant to EDTA. The concave cell wall layer of EDTA-resistant cells had increased numbers of highly compacted spherical units, giving this layer a disorganized appearance. The highly compacted appearance of this layer was unaltered by EDTA treatment. Thus, growth in Mg(2+)-deficient medium resulted in cells which were resistant to EDTA and which possessed an ultrastructurally altered outer layer of the outer cell wall membrane. Cell envelopes from EDTA-resistant cells were found to possess 18% less phosphorus, 16.4% more total carbohydrate, and 13.3% more 2-keto-3-deoxyoctonate than cell envelopes from EDTA-sensitive cells. There were also qualitative, but not quantitative, differences in the protein content of cell envelopes from EDTA-resistant and EDTA-sensitive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号