首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait   总被引:1,自引:0,他引:1  
Legged robots have better performance on discontinuous terrain than that of wheeled robots. However, the dynamic trotting and balance control of a quadruped robot is still a challenging problem, especially when the robot has multi-joint legs. This paper presents a three-dimensional model of a quadruped robot which has 6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg. On the basis of the Spring-Loaded Inverted Pendulum (SLIP) model, body control algorithm is discussed in the first place to figure out how legs work in 3D trotting. Then, motivated by the principle of joint function separation and introducing certain biological characteristics, two joint coordination approaches are developed to produce the trot and provide balance. The robot reaches the highest speed of 2.0 m.s-1, and keeps balance under 250 Kg.m.s-1 lateral disturbance in the simulations. The effectiveness of these approaches is also verified on a prototype robot which runs to 0.83 m.s-1 on the treadmill, The simulations and experiments show that legged robots have good biological properties, such as the ground reaction force, and spring-like leg behavior.  相似文献   

2.
High-speed running is one of the most important topics in the field of legged robots which requires strict constraints on structural design and control.To solve the problems of high acceleration,high energy consumption,high pace frequency and ground impact during high-speed movement,this paper presents a parallel actuated pantograph leg with an approximately decoupled configuration.The articulated leg features in light weight,high load capacity,high mechanical efficiency and structural stability.The similarity features of force and position between the control point and the foot are analyzed.The key design parameters,K1 and K2,which concern the dynamic performances,are carefully optimized by comprehensive evaluation of the leg inertia and mass within the maximum foot trajectory.A control strategy that incorporates virtual Spring Loaded Inverted Pendulum (SLIP) model and active force is also proposed to test the design.The strategy can implement highly flexible impedance without mechanical springs,which substantially simplifies the design and satisfies the variable stiffness requirements during high-speed running.The rationality of the structure and the effectiveness of the control law are validated by simulation and experiments.  相似文献   

3.
This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs).A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait,which can drive the robot to run with desired gait.To determine VCs for highly dynamic bounding gait,the limit cycle motions of the passive dynamic model of bounding gait are analyzed.The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials.In order to track the calculated periodic motions,the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller.A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability.The control approach was applied to a newly designed lightweight bioinspired quadruped robot,AgiDog.The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s-1 in sagittal plane with a Froude number approximating to 1.  相似文献   

4.
Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-legged robot, HITCR-ll, based on abstracted anatomy from insect legs. Kinematic structure, relative proportion of leg segment lengths and actuation system were analyzed in consideration of anatomical structure as well as muscle system of insect legs and desired mobility. A spring based passive compliance mechanism inspired by musculoskeletal structures of biological systems was integrated into distal segment of the leg to soften foot impact on touchdown. In addition, an efficient locomotion planner capable of generating natural movements for the legs during swing phase was proposed. The problem of leg swing was formulated as an optimal control procedure that satisfies a series of locomotion task terms while minimizing a biologically-based objective function, which was solved by a Gauss Pseudospectral Method (GPM) based numerical technique. We applied this swing generation algorithm to both a simulation platform and a robot prototype. Results show that the proposed leg structure and swing planner are able to successfully perform effective swing movements on rugged terrains.  相似文献   

5.
6.
A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal''s leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.  相似文献   

7.
Inspired from template models explaining biological locomotory systems and Raibert׳s pioneering legged robots, locomotion can be realized by basic sub-functions: elastic axial leg function, leg swinging and balancing. Combinations of these three can generate different gaits with diverse properties. In this paper we investigate how locomotion sub-functions contribute to stabilize walking at different speeds. Based on this trilogy, we introduce a conceptual model to quantify human locomotion sub-functions in walking. This model can produce stable walking and also predict human locomotion sub-function control during swing phase of walking. Analyzing experimental data based on this modeling shows different control strategies which are employed to increase speed from slow to moderate and moderate to fast gaits.  相似文献   

8.
We examine the muscle fiber population of skeletal muscles from whole body in the cheetah (Acinonyx jubatus). In the present experiments, we showed the characteristics of fiber composition in the cheetah by comparative studies among the cheetah, domestic cat, and the beagle dog. Fiber population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform. Histochemical analysis demonstrated that many muscles in the cheetah and domestic cat had a low percentage of Type I fibers and a high percentage of Type IIx fibers, while those in the beagle dog showed a high percentage of Type IIa. The hindlimb muscles in the cheetah had a higher percentage of Type II (Type IIa + IIx) fiber than the forelimb muscles. This fact suggests that the propulsive role of the hindlimb is greater than the forelimb in the cheetah. The longissimus in the cheetah had a high percentage of Type IIx fibers over a wide range from the thoracic to lumbar parts, while the population of muscle fibers in this muscle was different depending on the parts in the domestic cat and beagle dog. This indicates that the cheetah can produce a strong and quick extension of the spinal column and increase its stiffness during locomotion. Furthermore, we found the notable difference of muscle fiber type population between flexors and extensors of digits in the cheetah. The present experiments show the characteristics of muscle fibers in the cheetah, corresponded to its ability to perform high-speed running.  相似文献   

9.
The research field of legged robots has always relied on the bionic robotic research,especially in locomotion regulating approaches,such as foot trajectory planning,body stability regulating and energy efficiency prompting.Minimizing energy consumption and keeping the stability of body are considered as two main characteristics of human walking.This work devotes to develop an energy-efficient gait control method for electrical quadruped robots with the inspiration of human walking pattern.Based on the mechanical power distribution trend,an efficient humanoid power redistribution approach is established for the electrical quadruped robot.Through studying the walking behavior acted by mankind,such as the foot trajectory and change of mechanical power,we believe that the proposed controller which includes the bionic foot movement trajectory and humanoid power redistribution method can be implemented on the electrical quadruped robot prototype.The stability and energy efficiency of the proposed controller are tested by the simulation and the single-leg prototype experi-ment.The results verify that the humanoid power planning approach can improve the energy efficiency of the electrical quadruped robots.  相似文献   

10.
Bipedal walking and running with spring-like biarticular muscles   总被引:1,自引:0,他引:1  
Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.  相似文献   

11.
Felines use their spinal column to increase their running speed at rapid locomotion performance. However, its motion profile behavior during fast gait locomotion has little attention. The goal of this study is to examine the relative spinal motion profile during two different galloping gait speeds. To understand this dynamic behavior trend, a dynamic motion of the feline animal (Felis catus domestica) was measured and analyzed by motion capture devices. Based on the experiments at two different galloping gaits, we observed a significant increase in speed (from 3.2 m.s-1 to 4.33 m.s-1) during the relative motion profile synchronization between the spinal (range: 118.86~ to 168.00~) and pelvic segments (range: 46.35~ to 91.13~) during the hindlimb stance phase (time interval: 0.495 s to 0.600 s). Based on this discovery, the relative angular speed profile was applied to understand the possibility that the role of the relative motion match during high speed locomotion generates bigger ground reaction force.  相似文献   

12.
The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.  相似文献   

13.
The spring-loaded inverted pendulum describes the planar center-of-mass dynamics of legged locomotion. This model features linear springs with constant parameters as legs. In biological systems, however, spring-like properties of limbs can change over time. Therefore, in this study, it is asked how variation of spring parameters during ground contact would affect the dynamics of the spring-mass model. Neglecting damping initially, it is found that decreasing stiffness and increasing rest length of the leg during a stance phase are required for orbitally stable hopping. With damping, stable hopping is found for a larger region of rest-length rates and stiffness rates. Here, also increasing stiffness and decreasing rest length can result in stable hopping. Within the predicted range of leg parameter variations for stable hopping, there is no need for precise parameter tuning. Since hopping gaits form a subset of the running gaits (with vanishing horizontal velocity), these results may help to improve leg design in robots and prostheses.  相似文献   

14.
Walking in insects and most six-legged robots requires simultaneous control of up to 18 joints. Moreover, the number of joints that are mechanically coupled via body and ground varies from one moment to the next, and external conditions such as friction, compliance and slope of the substrate are often unpredictable. Thus, walking behaviour requires adaptive, context-dependent control of many degrees of freedom. As a consequence, modelling legged locomotion addresses many aspects of any motor behaviour in general. Based on results from behavioural experiments on arthropods, we describe a kinematic model of hexapod walking: the distributed artificial neural network controller walknet. Conceptually, the model addresses three basic problems in legged locomotion. (I) First, coordination of several legs requires coupling between the step cycles of adjacent legs, optimising synergistic propulsion, but ensuring stability through flexible adjustment to external disturbances. A set of behaviourally derived leg coordination rules can account for decentralised generation of different gaits, and allows stable walking of the insect model as well as of a number of legged robots. (II) Second, a wide range of different leg movements must be possible, e.g. to search for foothold, grasp for objects or groom the body surface. We present a simple neural network controller that can simulate targeted swing trajectories, obstacle avoidance reflexes and cyclic searching-movements. (III) Third, control of mechanically coupled joints of the legs in stance is achieved by exploiting the physical interactions between body, legs and substrate. A local positive displacement feedback, acting on individual leg joints, transforms passive displacement of a joint into active movement, generating synergistic assistance reflexes in all mechanically coupled joints.  相似文献   

15.
A protocol prescribing leg motion during the swing phase is developed for the planar lateral leg spring model of locomotion. Inspired by experimental observations regarding insect leg function when running over rough terrain, the protocol prescribes the angular velocity of the swing-leg relative to the body in a feedforward manner, yielding natural variations in the leg touch-down angle in response to perturbations away from a periodic orbit. Analysis of the reduced order model reveals that periodic gait stability and robustness to external perturbations depends strongly upon the angular velocity of the leg at touch-down. While the leg angular velocity at touch-down provides control over gait stability and can be chosen to stabilize unstable gaits, the resulting basin of stability is much smaller than that observed for the original lateral leg spring model with a fixed leg touch-down angle. Comparisons to experimental leg angular velocity data for running cockroaches reveal that while the proposed protocol is qualitatively correct, smaller leg angular accelerations occur during the second half of the swing phase. Modifications made to the recirculation protocol to better match experimental observations yield large improvements in the basin of stability.  相似文献   

16.
Lifelike models of the oscillating legs treated as three-segment systems show the course of kinetic and potential energy over the locomotor cycle for a cheetah, pronghorn, jackrabbit, and elephant running at speeds approaching their maxima. The models can be adjusted to eliminate differences among the animals in time intervals, mass or length of limb, and joint angles. This facilitates analysis of the influence on total energy of each of these variables and of the distribution of mass among leg segments. Fast-cycling legs of the carnivore type have significantly more energy than those of the hoofed type. This may contribute to the lesser endurance that is usual for carnivores that hunt using a high-speed dash.  相似文献   

17.
Arthropods are the most successful members of the animal kingdom largely because of their ability to move efficiently through a range of environments. Their agility has not been lost on engineers seeking to design agile legged robots. However, one cannot simply copy mechanical and neural control systems from insects into robotic designs. Rather one has to select the properties that are critical for specific behaviors that the engineer wants to capture in a particular robot. Convergent evolution provides an important clue to the properties of legged locomotion that are critical for success. Arthropods and vertebrates evolved legged locomotion independently. Nevertheless, many neural control properties and mechanical schemes are remarkably similar. Here we describe three aspects of legged locomotion that are found in both insects and vertebrates and that provide enhancements to legged robots. They are leg specialization, body flexion and the development of a complex head structure. Although these properties are commonly seen in legged animals, most robotic vehicles have similar legs throughout, rigid bodies and rudimentary sensors on what would be considered the head region. We describe these convergent properties in the context of robots that we developed to capture the agility of insects in moving through complex terrain.  相似文献   

18.
In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.  相似文献   

19.
In this paper a bio-inspired approach of velocity control for a quadruped robot running with a bounding gait on compliant legs is set up. The dynamic properties ofa sagittal plane model of the robot are investigated. By analyzing the stable fixed points based on Poincare map, we find that the energy change of the system is the main source for forward velocity adjustment. Based on the analysis of the dynamics model of the robot, a new simple linear running controller is proposed using the energy control idea, which requires minimal task level feedback and only controls both the leg torque and ending impact angle. On the other hand, the functions of mammalian vestibular reflexes are discussed, and a reflex map between forward velocity and the pitch movement is built through statistical regression analysis. Finally, a velocity controller based on energy control and vestibular reflexes is built, which has the same structure as the mammalian nervous mechanism for body posture control. The new con- troller allows the robot to run autonomously without any other auxiliary equipment and exhibits good speed adjustment capa- bility. A series simulations and experiments were set to show the good movement agility, and the feasibility and validity of the robot system.  相似文献   

20.
This study aims to understand the principles of gait generation in a quadrupedal model. It is difficult to determine the essence of gait generation simply by observation of the movement of complicated animals composed of brains, nerves, muscles, etc. Therefore, we build a planar quadruped model with simplified nervous system and mechanisms, in order to observe its gaits under simulation. The model is equipped with a mathematical central pattern generator (CPG), consisting of four coupled neural oscillators, basically producing a trot pattern. The model also contains sensory feedback to the CPG, measuring the body tilt (vestibular modulation). This spontaneously gives rise to an unprogrammed lateral walk at low speeds, a transverse gallop while running, in addition to trotting at a medium speed. This is because the body oscillation exhibits a double peak per leg frequency at low speeds, no peak (little oscillation) at medium speeds, and a single peak while running. The body oscillation autonomously adjusts the phase differences between the neural oscillators via the feedback. We assume that the oscillations of the four legs produced by the CPG and the body oscillation varying according to the current speed are synchronized along with the varied phase differences to keep balance during locomotion through postural adaptation via the vestibular modulation, resulting in each gait. We succeeded in determining a single simple principle that accounts for gait transition from walking to trotting to galloping, even without brain control, complicated leg mechanisms, or a flexible trunk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号