首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration.  相似文献   

2.
The effect of the anxiogenic beta-carboline methyl-beta-carboline-3-carboxyamide (FG 7142) on dopamine release in prefrontal cortex and striatum in the awake freely moving rat was determined using the technique of microdialysis. FG 7142 (25 mg/kg, i.p.) caused a time-dependent increase in dopamine release in prefrontal cortex which was statistically significantly greater than the response to vehicle administration. Dopamine release in striatum was unaltered by FG 7142. Pretreatment of animals with the benzodiazepine antagonist Ro 15-1788 (30 mg/kg, i.p., 15 min prior to FG 7142 administration) completely abolished the increase in dopamine release caused by FG 7142 in prefrontal cortex. These data indicate that the anxiogenic benzodiazepine inverse agonist FG 7142 can selectively increase dopamine release in prefrontal cortex, and that this effect appears to be mediated via the gamma-aminobutyric acid/benzodiazepine receptor complex.  相似文献   

3.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

4.
Increased excitatory output from medial prefrontal cortex is an important component in the development of cocaine sensitization. Activation of GABAergic systems in the prefrontal cortex can decrease glutamatergic activity. A recent study suggested that sensitization might be associated with a decrease in GABAB receptor responsiveness in the medial prefrontal cortex. Therefore, the present study examined whether repeated exposure to cocaine-modified neurochemical changes in the mesocorticolimbic dopamine system induced by infusion of baclofen into the medial prefrontal cortex. In vivo microdialysis studies were conducted to monitor dopamine, glutamate and GABA levels in the medial prefrontal cortex and glutamate levels in the ipsilateral nucleus accumbens and ventral tegmental area during the infusion of baclofen into medial prefrontal cortex. Baclofen minimally affected glutamate levels in the medial prefrontal cortex, nucleus accumbens or ventral tegmental area of control animals, but dose-dependently increased glutamate levels in each of these regions in animals sensitized to cocaine. This effect was not the result of changes in GABAB receptor-mediated modulation of dopamine or GABA in the medial prefrontal cortex. The data suggest that alterations in GABAB receptor modulation of medial prefrontal cortical excitatory output may play an important role in the development of sensitization to cocaine.  相似文献   

5.
Regulation of Extracellular Dopamine by the Norepinephrine Transporter   总被引:12,自引:6,他引:6  
Abstract: There is growing evidence of an interaction between dopamine and norepinephrine. To test the hypothesis that norepinephrine terminals are involved in the uptake and removal of dopamine from the extracellular space, the norepinephrine uptake blocker desmethylimipramine (DMI) was infused locally while the extracellular concentrations of dopamine were simultaneously monitored. DMI increased the extracellular concentrations of dopamine in the medial prefrontal cortex and nucleus accumbens shell but had no effect in the striatum. The combined systemic administration of haloperidol and the local infusion of DMI produced an augmented increase in extracellular dopamine in the cortex compared with the increase produced by either drug alone. This synergistic increase in dopamine overflow is likely due to the combination of impulse-mediated dopamine release produced by haloperidol and blockade of the norepinephrine transporter. No such synergistic effects were observed in the nucleus accumbens and striatum. Local perfusion of the α2-antagonist idazoxan also increased the extracellular concentrations of dopamine in the cortex. Although the stimulation of extracellular dopamine by idazoxan and DMI could be due to the increased extracellular concentrations of norepinephrine produced by these drugs, an increase in dopamine also was observed in lesioned rats that were depleted of norepinephrine and challenged with haloperidol. This contrasted with the lack of an effect of haloperidol on cortical dopamine in unlesioned controls. These results suggest that norepinephrine terminals regulate extracellular dopamine concentrations in the medial prefrontal cortex and to a lesser extent in the nucleus accumbens shell through the uptake of dopamine by the norepinephrine transporter.  相似文献   

6.
Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Previous studies have demonstrated that sensitization to cocaine is associated with a decrease in dopamine D? receptor function in the medial prefrontal cortex. The present report tested the hypothesis that reduced medial prefrontal cortex D? receptor function as a result of repeated cocaine exposure results in augmented excitatory transmission to the nucleus accumbens and ventral tegmental area, possibly as a partial result of enhanced inhibition of local dopamine release. Dual probe microdialysis experiments were conducted in male Sprague-Dawley rats 1, 7 or 30 days following the last of four daily injections of saline (1.0 mL/kg) or cocaine (15 mg/kg). Infusion of quinpirole (0.01, 1.0 and 100 μM), a D?-like receptor agonist, into the medial prefrontal cortex produced a dose-dependent decrease in cortical, nucleus accumbens and ventral tegmental area extracellular glutamate levels in control but not sensitized animals. Quinpirole also reduced basal dopamine levels in the medial prefrontal cortex in sensitized animals following 1 day of withdrawal from cocaine. Following 30 days of withdrawal, quinpirole also reduced dopamine levels in sensitized animals relative to saline controls, but not relative to baseline levels. These findings indicate that the expression of sensitization to cocaine is associated with altered modulation of mesocorticolimbic glutamatergic transmission at the level of the medial prefrontal cortex.  相似文献   

7.
Addiction to psychostimulants elicits behavioral and biochemical changes that are assumed to be mediated by alterations of gene expression in the brain. The changes in gene expression after 3 weeks of withdrawal from chronic cocaine treatment were evaluated in the nucleus accumbens core and shell, dorsal prefrontal cortex and caudate using a complementary DNA (cDNA) array. The level of mRNA encoded by several genes was identified as being up- or down-regulated in repeated cocaine versus saline subjects. The results from the cDNA array were subsequently confirmed at the protein level with immunoblotting. Of particular interest, parallel up-regulation in protein and mRNA was found for the adenosine A1 receptor in the accumbens core, neuroglycan C in the accumbens shell, and the GluR5 glutamate receptor subtype in dorsal prefrontal cortex. However, there was an increase in TrkB protein in the nucleus accumbens core of cocaine-treated rats without a corresponding alteration in mRNA. These changes of gene expression in corticolimbic circuitry may contribute to the psychostimulant-induced behavioral changes associated with addiction.  相似文献   

8.
Lammel S  Hetzel A  Häckel O  Jones I  Liss B  Roeper J 《Neuron》2008,57(5):760-773
The mesocorticolimbic dopamine system is essential for cognitive and emotive brain functions and is thus an important target in major brain diseases like schizophrenia, drug addiction, and attention deficit hyperactivity disorder. However, the cellular basis for the diversity in behavioral functions and associated dopamine-release pattern within the mesocorticolimbic system has remained unclear. Here, we report the identification of a type of dopaminergic neuron within the mesocorticolimbic dopamine system with unconventional fast-firing properties and small DAT/TH mRNA expression ratios that selectively projects to prefrontal cortex and nucleus accumbens core and medial shell as well as to basolateral amygdala. In contrast, well-described conventional slow-firing dopamine midbrain neurons only project to the lateral shell of the nucleus accumbens and the dorsolateral striatum. Among this dual dopamine midbrain system defined in this study by converging anatomical, electrophysiological, and molecular properties, mesoprefrontal dopaminergic neurons are unique, as only they do not possess functional somatodendritic Girk2-coupled dopamine D2 autoreceptors.  相似文献   

9.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

10.
In non‐food‐deprived rats a palatable meal induces a transient increase in dopamine output in the prefrontal cortex and nucleus accumbens shell and core; habituation to this response develops with a second palatable meal, selectively in the shell, unless animals are food‐deprived. A palatable meal also induces time‐dependent modifications in the dopamine and cAMP‐regulated phosphoprotein of Mr 32 000 (DARPP‐32) phosphorylation pattern that are prevented when SCH 23390, a selective dopamine D1 receptor antagonist, is administered shortly after the meal. This study investigated whether dopaminergic habituation in the shell had a counterpart in DARPP‐32 phosphorylation changes. In non‐food‐deprived rats, two consecutive palatable meals were followed by similar sequences of modifications in DARPP‐32 phosphorylation levels in the prefrontal cortex and nucleus accumbens core, while changes after the second meal were blunted in the shell. In food‐deprived rats two consecutive meals also induced similar phosphorylation changes in the shell. Finally, SCH 23390 administered shortly after the first palatable meal in non‐food‐deprived rats inhibited DARPP‐32 phosphorylation changes in response to the first meal, and prevented the habituation to a second meal in terms of dopaminergic response and DARPP‐32 phosphorylation changes. Thus, dopamine D1 receptor stimulation plays a role in the development of habituation.  相似文献   

11.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   

12.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

13.
Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1-1000 μM), cocaine (0.1-300 μM) or morphine (0.1-100 μM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1-1000 μM) had little effect. Following repeated exposure to methamphetamine (10 μM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1-300 μM) or morphine (10 and 100 μM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 μM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse.  相似文献   

14.
In vivo microdialysis was used to determine the effect of diazepam, flumazenil and FG-7142 upon the biogenic amine response to acute and repeated swim stress in the medial prefrontal cortex of the rat. Acute swim stress increased norepinephrine levels, although dopamine and serotonin levels remained stable. Upon re-exposure to swim stress twenty-four hours later, sustained increases (200–300% of baseline) in all three biogenic amines were detected. This enhanced response to re-stress was not seen in rats pretreated with either a benzodiazepine agonist (diazepam, 2 mg/kg), an antagonist (flumazenil, 10 mg/kg), or an inverse agonist (FG-7142, 10 mg/kg) given prior to the first swim stress. Therefore, the sensitization of biogenic amine response to re-stress may be prevented by compounds which differ in their activity at the benzodiazepine receptor.  相似文献   

15.
Prenatal stress greatly influences the ability of an individual to manage stressful events in adulthood. Such vulnerability may result from abnormalities in the development and integration of forebrain dopaminergic and glutamatergic projections during the prenatal period. In this study, we assessed the effects of prenatal stress on the expression of selective dopamine and glutamate receptor subtypes in the adult offsprings of rats subjected to repeated restraint stress during the last week of pregnancy. Dopamine D2-like receptors increased in dorsal frontal cortex (DFC), medial prefrontal cortex (MPC), hippocampal CA1 region and core region of nucleus accumbens (NAc) of prenatally stressed rats compared to control subjects. Glutamate NMDA receptors increased in MPC, DFC, hippocampal CA1, medial caudate-putamen, as well as in shell and core regions of NAc. Group III metabotropic glutamate receptors increased in MPC and DFC of prenatally stressed rats, but remained unchanged in all other regions examined. These results indicate that stress suffered during the gestational period has long lasting effects that extend into the adulthood of prenatally stressed offsprings. Changes in dopamine and glutamate receptor subtype levels in different forebrain regions of adult rats suggest that the development and formation of the corticostriatal and corticolimbic pathways may be permanently altered as a result of stress suffered prenatally. Maldevelopment of these pathways may provide a neurobiological substrate for the development of schizophrenia and other idiopathic psychotic disorders.  相似文献   

16.
In this study, we examined the effect of the acute p.o. administration of the antipsychotic drug mosapramine, as well as the antipsychotic drugs clozapine, haloperidol and risperidone, on the expression of Fos protein in the medial prefrontal cortex, nucleus accumbens and dorsolateral striatum of rat brain. The administration of mosapramine (1 or 3 mg/kg) significantly increased the number of Fos protein positive neurons in the medial prefrontal cortex, but not in the dorsolateral striatum. In addition, mosapramine (1, 3 or 10 mg/kg) produced a dose-dependent increase in the number of Fos protein positive neurons in the nucleus accumbens. The acute administration of 10 mg/kg of mosapramine significantly increased the number of Fos protein positive neurons in all brain regions. The acute administration of clozapine (30 mg/kg), similarly to mosapramine at lower doses (1 or 3 mg/kg), significantly increased the number of Fos protein positive neurons in the medial prefrontal cortex and nucleus accumbens, but not dorsolateral striatum. In contrast, haloperidol (0.3 mg/kg) significantly increased the number of Fos protein positive neurons in the nucleus accumbens and dorsolateral striatum, but not medial prefrontal cortex. The acute administration of risperidone (0.3 or 1 mg/kg) did not affect the number of Fos protein positive neurons in the medial prefrontal cortex, nucleus accumbens or dorsolateral striatum of rat brain, whereas a 3 mg/kg dose of risperidone significantly increased the number of Fos protein positive neurons in all brain regions. These results suggest that the ability of mosapramine to enhance expression of Fos protein in the medial prefrontal cortex may contribute to a clozapine-like profile with respect to actions on negative symptoms in schizophrenia. Furthermore, the lack of effect of low doses of mosapramine on Fos protein expression in the dorsolateral striatum, an area believed to play a role in movement, suggests that it may have a lower tendency to induce neurological side effects.  相似文献   

17.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Dopaminergic innervation of the amygdala is highly responsive to stress   总被引:6,自引:0,他引:6  
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.  相似文献   

19.
The effects of benzodiazepine receptor agonist, diazepam, and inverse agonist, FG 7142, were examined. Strong antagonism between FG 7142 (10 mg/kg) and diazepam (1 mg/kg) activity was revealed in the open field test. On the other hand, both FG 7142 and diazepam inhibited isolation-induced intraspecies aggressive behaviour of rats. FG 7142 also reduced interspecies aggression of mouse-killing rats. The findings suggest that both diazepam and FG 7142 have antiaggressive properties in the isolation-induced aggression model, which are mediated by benzodiazepine receptors of the central nervous system.  相似文献   

20.
Abstract: Using a brain microdialysis technique, we have shown in the rat that local infusion of a selective and competitive N -methyl- d -aspartate (NMDA) receptor antagonist, cis -4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755), into the medial frontal cortex via dialysis tubing caused a concentration-related increase in the extracellular release of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the cortical region. Coinfusion of a sodium channel blocker, tetrodotoxin, completely inhibited the ability of the NMDA antagonist to augment frontal dopamine metabolism. These findings suggest that dopamine neurons projecting to the frontal cortex might be under a tonic transsynaptic inhibition exerted by excitatory amino acid neurotransmission via the NMDA receptor at the level of dopamine terminal fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号