首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen toxicity in Saccharomyces cerevisiae lacking the copper/zinc superoxide dismutase (SOD1) can be suppressed by overexpression of the S. cerevisiae ATX2 gene. Multiple copies of ATX2 were found to reverse the aerobic auxotrophies of sod1(delta) mutants for lysine and methionine and also to enhance the resistance of these yeast strains to paraquat and atmospheric levels of oxygen. ATX2 encodes a novel 34.4-kDa polypeptide with a number of potential membrane-spanning domains. Our studies indicate that Atx2p localizes to the membrane of a vesicular compartment in yeast cells reminiscent of the Golgi apparatus. With indirect immunofluorescence microscopy, Atx2p exhibited a punctate pattern of staining typical of the Golgi apparatus, and upon subcellular fractionation, Atx2p colocalized with a biochemical marker for the yeast Golgi apparatus. We demonstrate here that this vesicle protein normally functions in the homeostasis of manganese ions and that this role in metal metabolism is necessary for the ATX1 suppression of SOD1 deficiency. First, overexpression of ATX2 caused cells to accumulate increased levels of manganese. Second, a deletion in ATX2 caused a decrease in the apparent available level of intracellular manganese and caused sod1(delta) mutants to become dependent upon exogenous manganese for aerobic growth. Third, ATX2 was incapable of suppressing oxidative damage in cells depleted of manganese ions or lacking the plasma membrane transporter for manganese. The effect of ATX2 overexpression on manganese accumulation and oxygen resistance is similar to what we have previously reported for mutations in PMR1, which encodes a manganese-trafficking protein that also resides in a vesicular compartment. Our studies are consistent with a model in which Atx2p and Pmr1p work in opposite directions to control manganese homeostasis.  相似文献   

2.
3.
Saccharomyces cerevisiae lacking Cu,Zn superoxide dismutase (SOD1) show several metabolic defects including aerobic blockages in methionine and lysine biosynthesis. We have previously shown that mutations in genes implicated in the formation of iron-sulfur clusters, designated seo (suppressors of endogenous oxidation), reverse the oxygen-dependent methionine and lysine auxotrophies of a sod1Delta strain. We now report the surprising finding that seo mutants do not reduce oxidative damage as shown by the lack of reduction of EPR-detectable "free" iron, which is characteristic of sod1Delta mutants. In fact, they exhibit increased oxidative damage as evidenced by increased accumulation of protein carbonyls. The seo class of mutants overaccumulates mitochondrial iron, and this iron accumulation is critical for suppression of the sod1Delta biosynthetic defects. Blocking overaccumulation of mitochondrial iron abolished the ability of the seo mutants to suppress the sod1Delta auxotrophies. By contrast, increasing the mitochondrial iron content of sod1Delta yeast using high copy MMT1, which encodes a mitochondrial iron transporter, was sufficient to mimic the seo mutants. Our studies indicated that suppression of the sod1Delta methionine auxotrophy was dependent on the pentose phosphate pathway, which is a major source of NADPH production. By comparison, the sod1Delta lysine auxotrophy appears to be reversed in the seo mutants by increased expression of genes in the lysine biosynthetic pathway, perhaps through sensing of mitochondrial damage by the retrograde response.  相似文献   

4.
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.  相似文献   

5.
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.  相似文献   

6.
Phenotypic heterogeneity describes non-genetic variation that exists between individual cells within isogenic populations. The basis for such heterogeneity is not well understood, but it is evident in a wide range of cellular functions and phenotypes and may be fundamental to the fitness of microorganisms. Here we use a suite of novel assays applied to yeast, to provide an explanation for the classic example of heterogeneous resistance to stress (copper). Cell cycle stage and replicative cell age, but not mitochondrial content, were found to be principal parameters underpinning differential Cu resistance: cell cycle-synchronized cells had relatively uniform Cu resistances, and replicative cell-age profiles differed markedly in sorted Cu-resistant and Cu-sensitive subpopulations. From a range of potential Cu-sensitive mutants, cup1Delta cells lacking Cu-metallothionein, and particularly sod1Delta cells lacking Cu, Zn-superoxide dismutase, exhibited diminished heterogeneity. Furthermore, age-dependent Cu resistance was largely abolished in cup1Delta and sod1Delta cells, whereas cell cycle-dependent Cu resistance was suppressed in sod1Delta cells. Sod1p activity oscillated approximately fivefold during the cell cycle, with peak activity coinciding with peak Cu-resistance. Thus, phenotypic heterogeneity in copper resistance is not stochastic but is driven by the progression of individual cells through the cell cycle and ageing, and is primarily dependent on only Sod1p, out of several gene products that can influence the averaged phenotype. We propose that such heterogeneity provides an important insurance mechanism for organisms; creating subpopulations that are pre-equipped for varied activities as needs may arise (e.g. when faced with stress), but without the permanent metabolic costs of constitutive expression.  相似文献   

7.
8.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

9.
Copper,zinc superoxide dismutase (SOD1) in mammals is activated principally via a copper chaperone (CCS) and to a lesser degree by a CCS-independent pathway of unknown nature. In this study, we have characterized the requirement for CCS in activating SOD1 from Drosophila. A CCS-null mutant (Ccs(n)(29)(E)) of Drosophila was created and found to phenotypically resemble Drosophila SOD1-null mutants in terms of reduced adult life span, hypersensitivity to oxidative stress, and loss of cytosolic aconitase activity. However, the phenotypes of CCS-null flies were less severe, consistent with some CCS-independent activation of Drosophila SOD1 (dSOD1). Yet SOD1 activity was not detectable in Ccs(n)(29)(E) flies, due largely to a striking loss of SOD1 protein. In contrast, human SOD1 expressed in CCS-null flies is robustly active and rescues the deficits in adult life span and sensitivity to oxidative stress. The dependence of dSOD1 on CCS was also observed in a yeast expression system where the dSOD1 polypeptide exhibited unusual instability in CCS-null (ccs1Delta) yeast. The residual dSOD1 polypeptide in ccs1Delta yeast was nevertheless active, consistent with CCS-independent activation. Stability of dSOD1 in ccs1Delta cells was readily restored by expression of either yeast or Drosophila CCS, and this required copper insertion into the enzyme. The yeast expression system also revealed some species specificity for CCS. Yeast SOD1 exhibits preference for yeast CCS over Drosophila CCS, whereas dSOD1 is fully activated with either CCS molecule. Such variation in mechanisms of copper activation of SOD1 could reflect evolutionary responses to unique oxygen and/or copper environments faced by divergent species.  相似文献   

10.
Resistance of Candida albicans to reactive oxygen species is thought to enhance its virulence in mammalian hosts. Genes such as SOD1, which encodes the anti-oxidant, superoxide dismutase, are known virulence factors. We disrupted the gene GRX2, which encodes a putative glutathione reductase (glutaredoxin) in C. albicans, and we compared the mutant with an sod1Deltamutant. In vitro, the grx2Deltastrain, but not the sod1Delta strain, was defective in hypha formation. The grx2Deltastrain, but not sod1Delta, was significantly more susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, both mutants were susceptible to 1 mM menadione, but grx2Deltanull alone was resistant to diamide. Both mutants were attenuated in a murine intravenous challenge model, and a GRX2 reintegrant regained partial virulence. Emphasis on the putative function of products of genes such as SOD1 and GRX2 in resistance to oxidative stress may oversimplify their functions in the virulence process, since the grx2Deltastrain also gave defective hypha formation. Both mutants were sensitive to menadione and were slow to form germ tubes, though growth rates matched controls once the lag phase was passed.  相似文献   

11.
Much has been published on the non-enzymatic antioxidant L-ascorbic acid (vitamin C), but even so its interaction with endogenous cellular defense systems has not yet been fully elucidated. Our study investigated the antioxidant activity of L-ascorbic acid in wild-type strain EG103 (SOD) Saccharomyces cerevisiae and isogenic mutant strains deficient in cytosolic superoxide dismutase (sod1delta), mitochondrial superoxide dismutase (sod2delta) or both (sod1delta sod2delta), metabolizing aerobically or anaerobically with and without the stressing agent paraquat. The results show that during both aerobic and anaerobic metabolism there was a significant increase in the survival of both wild-type S. cerevisiae cells and the mutant cells (sod1delta, sod2delta and sod1delta sod2delta) when pretreated with L-ascorbic acid before exposure to paraquat. Exposure to paraquat resulted in higher catalase activity but this significantly decreased when the cells were pre-treated with L-ascorbic acid. These results demonstrate that due to the damage caused by paraquat, the antioxidant protection of L-ascorbic acid seems to be mediated by catalase levels in yeast cells.  相似文献   

12.
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.  相似文献   

13.
14.
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2?– levels increased while sod1? mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2?– generator paraquat. The sod1? mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2?– production and Sod1 within the IMS plays a role in scavenging O2?– allowing the cells to grow under high pressure.BackgroundEmpirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure.MethodsWild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2?– generation in cells was estimated by fluorescence staining.ResultsMutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2?– generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants.ConclusionsHigh pressure enhances O2?– production and Sod1 within the IMS plays a role in scavenging O2?– allowing the cells to grow under high pressure.General significanceUnlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2?– levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.  相似文献   

15.
Amphiphilic 3-(alkanoylamino)propyldimethylamine-N-oxides with different length of the alkyl chain, i.e. different hydrophilic-lipophilic balance, act in micromolar concentrations as SOD mimics by lifting the inhibition of aerobic growth caused by SOD deletions in Saccharomyces cerevisiae. They also enhance the survival of sod mutants of S. cerevisiae exposed to the hydrophilic superoxide-generating prooxidant paraquat and the amphiphilic hydroperoxide-producing tert-butylhydroperoxide (TBHP), and largely prevent TBHP-induced peroxidation of isolated yeast plasma membrane lipids. Unlike the SOD-mimicking effect, the magnitude of these effects depends on the alkyl chain length of the amine-N-oxides, which incorporate into S. cerevisiae membranes, causing fluidity changes in both the hydrophilic surface part of the membrane and the membrane lipid matrix. Unlike wild-type strains, the membranes of sod mutants were found to contain polyunsaturated fatty acids; the sensitivity of the mutants to lipophilic pro-oxidants was found to increase with increasing content of these acids. sod mutants are useful in assessing pro- and antioxidant properties of different compounds.  相似文献   

16.
Yeasts lacking copper-zinc superoxide dismutase (sod1Delta) exhibit a broad range of phenotypes, many of which can be rescued by growth in the presence of high levels of ionic manganese. We undertook a comprehensive survey of the effects of manganese on wild-type and sod1Delta yeasts and found that 5 mM Mn2+ rescued all known growth-related phenotypes, such as slow growth in air, temperature sensitivity, specific amino acid auxotrophies, no growth in high oxygen, poor growth in nonfermentable carbon sources, and decreased stationary-phase survival. Iron-related phenotypes-elevated electron paramagnetic resonance detectable ("free") iron, decreased aconitase activity, and fragmenting vacuoles-as well as zinc sensitivity were also rescued. The activity of manganese superoxide dismutase remained constant or was reduced when the yeasts were grown in the presence of MnCl2, indicating that induction of this alternative superoxide dismutase is not the explanation. In contrast to MnCl2 treatment, addition of two manganese-containing superoxide dismutase mimetic compounds to the growth medium did not provide any rescue of sod1Delta yeast growth but rather had an sod1Delta-selective inhibitory effect at micromolar concentrations. Mechanisms by which ionic manganese can effect this rescue, while the mimetic compounds do not, are discussed.  相似文献   

17.
The absence of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) is shown here to cause vacuolar fragmentation in Saccharomyces cerevisiae. Wild-type yeast have 1-3 large vacuoles whereas the sod1Delta yeast have as many as 50 smaller vacuoles. Evidence that this fragmentation is oxygen-mediated includes the findings that aerobically (but not anaerobically) grown sod1Delta yeast exhibit aberrant vacuoles and genetic suppressors of other oxygen-dependent sod1 null phenotypes rescue the vacuole defect. Surprisingly, iron also is implicated in the fragmentation process as iron addition exacerbates the sod1Delta vacuole defect while iron starvation ameliorates it. Because the vacuole is reported to be a site of iron storage and iron reacts avidly with reactive oxygen species to generate toxic side products, we propose that vacuole damage in sod1Delta cells arises from an elevation of iron-mediated oxidation within the vacuole or from elevated pools of "free" iron that may bind nonproductively to vacuolar ligands. Furthermore, additional pleiotropic phenotypes of sod1Delta cells (including increased sensitivity to pH, nutrient deprivation, and metals) may be secondary to vacuolar compromise. Our findings support the hypothesis that oxidative stress alters cellular iron homeostasis which in turn increases oxidative damage. Thus, our findings may have medical relevance as both oxidative stress and alterations in iron homeostasis have been implicated in diverse human disease processes. Our findings suggest that strategies to decrease intracellular iron may significantly reduce oxidatively induced cellular damage.  相似文献   

18.
19.
Yeast lacking superoxide dismutase. Isolation of genetic suppressors.   总被引:2,自引:0,他引:2  
Null mutants of superoxide dismutase (SOD) in Saccharomyces cerevisiae are associated with a number of biochemical defects. In addition to being hypersensitive to oxygen toxicity, strains containing deletions in both the SOD1 (encoding Cu/Zn-SOD) and SOD2 (encoding Mn-SOD) genes are defective in sporulation, are associated with a high mutation rate, and are unable to biosynthesize lysine and methionine. The sod-linked defect in lysine metabolism was explored in detail and was found to occur at an early step in lysine biosynthesis, evidently at the level of the alpha-amino adipate transaminase. To better understand the role of SOD in cell metabolism, our laboratory has isolated yeast suppressors that have bypassed the SOD defect ("bsd" strains), that is, S. cerevisiae cells lacking SOD, yet resistant to oxygen toxicity. Two nuclear bsd complementation groups have been identified, and both suppress a variety of biological defects associated with sod1 and sod2 null mutants. These results demonstrate that a single gene mutation can alleviate the requirement for SOD in cell growth. Both bsd complementation groups are unable to utilize many non-fermentable carbon sources, suggesting a possible suppressor-linked defect in electron transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号