首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
    
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
8.
The method of chromatin photo-stabilization by the action of visible light in the presence of ethidium bromide was used for investigation of higher-level chromatin structures in isolated nuclei. As a model we used rat hepatocyte nuclei isolated in buffers which stabilized or destabilized nuclear matrix. Several higher-level chromatin structures were visualized: 100nm globules-chromomeres, chains of chromomeres-chromonemata, aggregates of chromomeres-blocks of condensed chromatin. All these structures were completely destroyed by 2M NaCl extraction independent of the matrix state, and DNA was extruded from the residual nuclei (nuclear matrices) into a halo. These results show that nuclear matrix proteins do not play the main role in the maintenance of higher-level chromatin structures. Preliminary irradiation led to the reduction of the halo width in the dose-dependent manner. In regions of condensed chromatin of irradiated nucleoids there were discrete complexes consisting of DNA fibers radiating from an electron-dense core and resembling the decondensed chromomeres or the rosette-like structures. As shown by the analysis of proteins bound to irradiated nuclei upon high-salt extraction, irradiation presumably stabilized the non-histone proteins. These results suggest that in interphase nuclei loop domains are folded into discrete higher-level chromatin complexes (chromomeres). These complexes are possibly maintained by putative non-histone proteins, which are extracted with high-salt buffers from non-irradiated nuclei.  相似文献   

9.
SUMO-interacting motifs (SIMs) play a central role in the fate of SUMO-modified proteins. Here we report a real-time SUMO-binding assay. It can be applied to the identification of SIMs and to screening for the identification of novel SUMO-binding proteins. Using this assay, we investigated the SIMs in SETDB1 and MCAF1 to gain insight into the assembly of SETDB1-MCAF1-mediated gene silencing.  相似文献   

10.
Chromatin is thought to be structurally discontinuous because it is packaged into morphologically distinct chromosomes that appear physically isolated from one another in metaphase preparations used for cytogenetic studies. However, analysis of chromosome positioning and movement suggest that different chromosomes often behave as if they were physically connected in interphase as well as mitosis. To address this paradox directly, we used a microsurgical technique to physically remove nucleoplasm or chromosomes from living cells under isotonic conditions. Using this approach, we found that pulling a single nucleolus or chromosome out from interphase or mitotic cells resulted in sequential removal of the remaining nucleoli and chromosomes, interconnected by a continuous elastic thread. Enzymatic treatments of interphase nucleoplasm and chromosome chains held under tension revealed that mechanical continuity within the chromatin was mediated by elements sensitive to DNase or micrococcal nuclease, but not RNases, formamide at high temperature, or proteases. In contrast, mechanical coupling between mitotic chromosomes and the surrounding cytoplasm appeared to be mediated by gelsolin-sensitive microfilaments. Furthermore, when ion concentations were raised and lowered, both the chromosomes and the interconnecting strands underwent multiple rounds of decondensation and recondensation. As a result of these dynamic structural alterations, the mitotic chains also became sensitive to disruption by restriction enzymes. Ion-induced chromosome decondensation could be blocked by treatment with DNA binding dyes, agents that reduce protein disulfide linkages within nuclear matrix, or an antibody directed against histones. Fully decondensed chromatin strands also could be induced to recondense into chromosomes with pre-existing size, shape, number, and position by adding anti-histone antibodies. Conversely, removal of histones by proteolysis or heparin treatment produced chromosome decondensation which could be reversed by addition of histone H1, but not histones H2b or H3. These data suggest that DNA, its associated protein scaffolds, and surrounding cytoskeletal networks function as a structurally-unified system. Mechanical coupling within the nucleoplasm may coordinate dynamic alterations in chromatin structure, guide chromosome movement, and ensure fidelity of mitosis. J. Cell. Biochem. 65:114–130. © 1997 Wiley-Liss, Inc.  相似文献   

11.
12.
SUMO化: 一种重要的体内翻译后蛋白质修饰系统   总被引:2,自引:0,他引:2  
靶蛋白被小泛素相关修饰物(small ubiquitin-related modifier,SUMO)修饰已经成为真核细胞特有的翻译后蛋白质修饰标志之一.SUMO与靶蛋白之间这种可逆的共价连接,在核质运输、DNA与蛋白质结合活性、蛋白质之间相互作用、转录调控、DNA修复以及维持基因组稳定等方面均发挥着重要的调节作用.在许多人类疾病如癌症和神经退化性疾病中,SUMO化修饰作用对疾病的发生与发展起着极为重要的作用.阐明SUMO化修饰在这些疾病中的功能,将为疾病的治疗开辟一条崭新的思路.  相似文献   

13.
  总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Wu Y  Wang L  Zhou P  Wang G  Zeng Y  Wang Y  Liu J  Zhang B  Liu S  Luo H  Li X 《Cell research》2011,21(5):807-816
Discovery of emerging REGγ-regulated proteins has accentuated the REGγ-proteasome as an important pathway in multiple biological processes, including cell growth, cell cycle regulation, and apoptosis. However, little is known about the regulation of the REGγ-proteasome pathway. Here we demonstrate that REGγ can be SUMOylated in vitro and in vivo by SUMO-1, SUMO-2, and SUMO-3. The SUMO-E3 protein inhibitor of activated STAT (PIAS)1 physically associates with REGγ and promotes SUMOylation of REGγ. SUMOylation of REGγ was found to occur at multiple sites, including K6, K14, and K12. Mutation analysis indicated that these SUMO sites simultaneously contributed to the SUMOylation status of REGγ in cells. Posttranslational modification of REGγ by SUMO conjugation was revealed to mediate cytosolic translocation of REGγ and to cause increased stability of this proteasome activator. SUMOylation-deficient REGγ displayed attenuated ability to degrade p21(Waf//Cip1) due to reduced affinity of the REGγ SUMOylation-defective mutant for p21. Taken together, we report a previously unrecognized mechanism regulating the activity of the proteasome activator REGγ. This regulatory mechanism may enable REGγ to function as a more potent factor in protein degradation with a broader substrate spectrum.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Directed cell migration is a property central to multiple basic biological processes. Here, we show that directed cell migration is associated with global changes in the chromatin fiber. Polarized posttranslational changes in histone H1 along with a transient decrease in H1 mobility were detected in cells facing the scratch in a wound healing assay. In parallel to the changes in H1, the levels of the heterochromatin marker histone H3 lysine 9 tri-methylation were elevated. Interestingly, reduction of the chromatin-binding affinity of H1 altered the cell migration rates. Moreover, migration-associated changes in histone H1 were observed during nuclear motility in the simple multicellular organism Neurospora crassa . Our studies suggest that dynamic reorganization of the chromatin fiber is an early event in the cellular response to migration cues.  相似文献   

17.
    
  相似文献   

18.
19.
Newly synthesised histones are thought to dimerise in the cytosol and undergo nuclear import in complex with histone chaperones. Here, we provide evidence that human H3.1 and H4 are imported into the nucleus as monomers. Using a tether‐and‐release system to study the import dynamics of newly synthesised histones, we find that cytosolic H3.1 and H4 can be maintained as stable monomeric units. Cytosolically tethered histones are bound to importin‐alpha proteins (predominantly IPO4), but not to histone‐specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, IPO4 dissociation and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones reveals an excess of H3 specifically associated with sNASP, suggesting that NASP maintains a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号