首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nectar robbery is usually thought to impact negatively on the reproductive success of plants, but also neutral or even positive effects have been reported. Very few studies have investigated the effects of nectar robbing on the behaviour of legitimate pollinators so far. Such behavioural changes may lead to the reduction of geitonogamy or to increased pollen movement. We simulated nectar robbing in experimental sites as well as in natural populations of Aconitum napellus ssp. lusitanicum, a rare plant pollinated by long-tongued bumblebees. In an experimental setup, we removed the nectaries of 40 % of the flowers, which is similar to rates of robbing observed in wild populations. Patches of plants with experimentally robbed flowers were compared with control patches containing plants with untreated flowers. We observed pollinator behaviour, mimicked male reproductive success (pollen dispersal) using fluorescent dye, and measured female reproductive success (seed set). The main legitimate visitors were bumblebees while honeybees were often observed robbing nectar. They did so by “base working”, i.e. sliding between tepals. Bumblebees tended to visit fewer flowers per plant and spent less time per single flower when these had been experimentally robbed. This change in behaviour consequently increased the proportion of flowers visited by bumblebees in patches with robbed flowers. Fluorescent dye mimicking pollen flow was dispersed larger distances after pollinators had visited patches with robbed flowers compared to control patches. Average seed set per plant was not affected by nectar robbing. Our results demonstrated that A. napellus does not suffer from nectar robbery but may rather benefit via improved pollen dispersal and thus, male reproductive success. Knowledge on such combined effects of behavioural changes of pollinators due to nectar robbery is important to understand the evolutionary significance of exploiters of such mutualistic relationships between plants and their pollinators.  相似文献   

2.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

3.
Nectar robbing – harvesting nectar illegitimately – can have a variety of outcomes for plant sexual reproduction and for the pollinator community. Nectar robbers can damage flowers while robbing nectar, which could affect the behavior of subsequent flower visitors and, consequently, plant reproduction. However, only nectar manipulation by nectar robbers has so far received attention. We found a short-tongued bee, Hoplonomia sp. (Halictidae), mutilating the conspicuous lower petal of the zygomorphic flowers of Leucas aspera (Lamiaceae) while robbing nectar. We hypothesized that the mutilation of the conspicuous lower petal deters legitimate pollinators on L. aspera flowers, which, in turn, might affect plant reproduction. We first assessed the proportion of naturally-robbed flowers in plant populations for three years to confirm that it was not a purely local phenomenon due to a few individual bees. We then studied diversity, community and visitation characteristics of pollinators, nectar dynamics and fruit set in unrobbed and robbed open flowers in naturally-robbed populations. The proportion of robbed flowers varied significantly across sites and years. Robbing did not affect nectar dynamics in flowers, but it did alter flower morphology, so much so that it reduced pollinator visitation and altered the pollinator community on robbed flowers. However, the maternal function of plant reproduction was not affected by nectar robbing. This study for the first time shows that a nectar robber can have an ecologically significant impact on floral morphology.  相似文献   

4.
Nectar robbers may have direct and indirect effects on plant reproductive success but the presence of nectar robbing is not proof of negative fitness effects. We combined census data and field experiments to disentangle the complex effects of nectar robbing on nectar production rates, pollinator behavior, pollen export, and female reproductive success of Pitcairnia angustifolia. Under natural conditions flowers were visited by four different animal species including a robber‐like pollinator and a secondary robber. Natural levels of nectar robbing ranged from 40 to 100%. Natural variation in nectar robbing was not associated with fruit set in any year whereas seed set was weakly positively associated for 1 year only. Artificial nectar robbing did not increase nectar production or concentration, did not affect the behavior of long‐billed hummingbirds, and when faced with artificially robbed flowers, these visitors behaved as secondary nectar robbers. The number of stigmas within a patch that received pollen dye analogs and the average distance traveled by these analogs were not significantly different between robbing treatments (robbed flowers versus unrobbed flowers), but the maximum distance traveled by these pollen analogs was higher when nectar robbing was not prevented. Overall, the proportion of robbed flowers on an inflorescence had a neutral effect to a weak positive effect on the reproduction of individual plants (i.e. positive association between nectar robbing and fruit set in 2002) even when it clearly changed the behavior of its most efficient pollinator potentially increasing the frequency of nectar robbing within a plant.  相似文献   

5.
Differences in morphology among bumblebee species sharing a nectar resource may lead to variation in foraging behaviour and efficiency. Less efficient bumblebees might opportunistically switch foraging strategies from legitimate visitation to secondary robbing when hole-biting primary robbers are present. We observed various aspects of pollination and nectar robbing ecology of Linaria vulgaris in the Colorado Rocky Mountains, with emphasis on the role of bumblebee proboscis length. Bees can extract nectar from a nectar spur legitimately, by entering the front of the flower, or illegitimately, by biting or reusing holes in the spur. Although L. vulgaris flowers are apparently adapted for pollination by long-tongued bees, short-tongued bees visited them legitimately for trace amounts of nectar but switched to secondary robbing in the presence of primary robbers. Longer-tongued bees removed more nectar in less time than did shorter-tongued bees, and were less likely to switch to secondary robbing even when ∼100% of flowers had been pierced. As the proportion of robbed flowers in the population increased, the relative number of legitimate visits decreased while the relative number of robbing visits increased. Robbing decreased nectar standing crop and increased the proportion of empty flowers per inflorescence. Despite these potentially detrimental effects of robbers, differences in inflorescence use among robbers and pollinators, and the placement of holes made by primary robbers, may mitigate negative effects of nectar robbing in L. vulgaris . We discuss some of the reasons that L. vulgaris pollination ecology and growth form might temper the potentially negative effect of nectar robbing.  相似文献   

6.
Lopes LE  Buzato S 《Oecologia》2007,154(2):305-314
Few studies of plant–pollinator interactions in fragmented landscapes evaluate the consequences of floral visitor variation on multiple stages of plant reproduction. Given that fragmentation potentially has positive or negative effects on different organisms, and that self-incompatible plant species depend on pollinators for sexual reproduction, differences in floral visitor assemblages may affect certain plant reproductive stages. We evaluated how pollinator assemblage, availability of floral resources, pollination, reproductive output, and seed and seedling performance of Psychotria suterella Muell. Arg. varied among three fragmentation categories: non-fragmented habitats, fragments connected by corridors, and isolated fragments. Richness and frequency of floral visitors were greater in fragments than in non-fragmented sites, resulting mainly from the addition of species typically found in disturbed areas. Although 24 species visited Psychotria suterella flowers, bumblebees were considered the most important pollinators, because they showed the highest frequency of visits and were present in eight out of ten sites. Additionally, the number of pollen tubes per flower per visit was lower in areas without bumblebees. The increased visitation in fragments seemed to enhance pollination slightly. However, fruit and seed output, germination, and seed and seedling mass were similar in non-fragmented sites, connected sites, and isolated fragments. Our results suggested that, even for a self-incompatible species, responses to habitat fragmentation at different stages of plant reproduction might be decoupled from the responses observed in floral visitors, if fruit set is not pollen limited. If all reproductive stages were considered, variation on the small scale was more important than the variation explained by fragmentation category. In spite of its self-incompatible breeding system, this plant–pollinator system showed resilience to habitat fragmentation, mainly as a result of high availability of potential mates to P. suterella individuals, absence of pollen limitation, and the presence of bumblebees (Bombus spp.) throughout this highly connected landscape.  相似文献   

7.
The floral biology and pollination process of Glechoma longituba (Nakai) Kuprian, a clonal gynodioecious, perennial herb that is widely distributed in China was investigated in natural populations. During visits to the flowers of G. longituba, the carpenter bee—Xylocopa sinensis mainly displayed nectar-robbing behavior with minimal pollination. Nectar robbing behavior began at the onset of flowering and continued for about 3 weeks ending at about the middle of the flowering period. A total of 18.6% floral visits in this period were by nectar robbers, with about 90% of the flowers in the study populations being subjected to two or two nectar-robbing episodes. During controlled experiments, lower pollination efficiency was recorded for X. sinensis compared to legitimate pollinators. Pollination by the robber-like pollinator X. sinensis during the early-mid phase of the flowering season yielded seeds of 16.16%. Although nectar robbing by the carpenter bee seemed to have a slight enhancing effect on seed set in G. longituba, this effect was effectively masked by the more pronounced detrimental effect of nectar robbing. Experiments indicated that nectar robbing by the carpenter bee reduced seed production by more than 26%, largely owing to the consequent shortening of the life span of robbed flowers. Furthermore, 10.43% of the ovules and 13.04% of the nectaries in the robbed flowers were damaged, thus causing a decrease or entire loss of reproductive opportunity in the robbed flowers. In addition, a higher number of pollen grains remained on the androecia of robbed flowers indicating that nectar robbing may have a lowering effect on male fitness in G. longituba.  相似文献   

8.
  • Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation.
  • We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand‐pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated.
  • The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short‐tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand‐pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot.
  • The flowers damaged by florivory allowed Bfriseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating.
  相似文献   

9.
Hummingbird-pollinated flowers are frequently subjected to nectar robbing. In this paper, I examine the impact of nectar robbing on plant reproductive success on a hummingbird-pollinated species. After studying the basic aspects of the floral morphology and reproduction of Macleania bullata (Ericaceae) in a tropical montane wet forest in southwest Colombia, I examined the percent of flowers robbed and the effect of nectar robbery on fruit set. The flowers of this species are typical for plants pollinated by long-bill hummingbirds. They are protandrous and open for four days. Fruit production requires a pollinator visit; fruit set following pollinator exclusion was zero. Fruit set following xenogamous pollen transfer (36.8%) differed significantly from that of population controls (11.9%) and of autogamous pollen transfer (6.3%). Nectar volume, sugar concentration and sugar production were measured at daily intervals from bud opening until the fading of flowers. Daily nectar production (both volume and amount of sugar) varied considerably with flower age. Sugar production peaked on the second day, coinciding with the male phase. The frequency of nectar robbing in the studied population was very high (75% of examined flowers) and was positively correlated with reduced fruit set. I discuss the probability of a relation between reduced fruit set on robbed flowers and an energetic investment. Robbing by non-pollinating visitors can suppose the plant to re-synthesize more nectar. The high incidence of nectar robbing impugns the advantage of specialization.  相似文献   

10.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

11.
Richardson SC 《Oecologia》2004,139(2):246-254
As exploiters of plant-pollinator mutualisms, nectar-robbers remove rewards (nectar) without providing pollination services. Though one might expect nectar-robbing to be costly to plants, it may instead benefit plants by indirectly increasing pollen dispersal. I investigated the direct effects of nectar-robbing bees (Xylocopa californica) on floral rewards and behaviors of pollinators visiting desert willow (Chilopsis linearis) and indirect effects of robbing on the reproductive success of the plant. Nectar-robbers reduced nectar; while unrobbed and robbed flowers were equally likely to contain nectar, nectar volumes were smaller in robbed flowers with nectar. Apis mellifera (honeybees), ineffective pollinators in terms of pollen deposition, avoided robbed flowers. In contrast, Bombus sonorus (bumblebees), effective pollinators, did not avoid robbed flowers. While bumblebees tended to spend less time in robbed flowers, the time that they spent in flowers was not correlated with pollen deposition. Using powder mimicking pollen, I found that on some days, powder was dispersed farther or to more flowers from robbed flowers, indicating that robbing may sometimes benefit plants by increasing male reproductive success. Powder movement suggested that the effect of robbing on male reproductive success ranged from costly to beneficial. The outcome for flowers that were marked early each morning was a function of prevalence of robbing and abundances of effective pollinators, but not a function of spatial variability among trees in prevalence of robbing or the abundance of ineffective honeybees. Unlike powder dispersal, female reproductive success, measured by fruit set and the number of pollen tubes growing in styles, was not affected by robbing. Thus, robbers did not reduce plants female reproductive success either directly by damaging flowers or indirectly by reducing pollen deposition by pollinators. Overall, this study indicates that nectar-robbers were not often costly to plants, and sometimes even benefited plants.  相似文献   

12.
Nectar robbing may have an indirect negative effect on plant reproduction by discouraging legitimate pollinator species from visiting robbed flowers. In this study, we set up a 2 × 2 factorial design with nectar-robbing ants and hummingbird pollination to test for non-additive effects on fruit set, seed mass, and seed germination of the leafless mistletoe Tristerix aphyllus (Loranthaceae). Even though ants caused conspicuous damage at the base of the floral tubes, nectar availability was reduced by only 8 % in the presence of ants. The green-backed firecrown Sephanoides sephaniodes was insensitive to the presence of ants. Rather, the bird responded to flower number and the presence or the absence of damage, but not to the extent of damage within inflorescences. As hummingbirds were largely insensitive to variation in nectar robbing, the interaction ant × hummingbird had no effect on plant-reproductive success. Thus, the factorial experiment did not provide evidence for indirect negative effects of nectar robbing on plant reproduction. These results suggest that indirect effects of nectar robbers on pollinator behaviour may occur under a more restricted set of conditions than those previously considered. We suggest that the low amount of nectar removed by nectar-robbing ants was insufficient for hummingbirds to avoid robbed flowers, which restricted the potential for non-additive effects.  相似文献   

13.
Summary Different subsets of mainland nectarivores visited Quassia amara (Simaroubaceae), a self-compatible, predominately bird-pollinated treelet, at three islands and the mainland in Panamá. Factors correlated with reproductive success, defined as seed to ovule ratio, included the species pollinating and robbing flowers, visitor activity, pollinator response to nectar robbing, and internal regulation of fruit production. The absence of robbers and former pollinators on an island separated from the mainland during the holocene was associated with shifts in flower size, nectar production, and 3–4fold increases in population reproductive success and pollinator efficiency (=seeds produced per visit). Exclusion of robbers at three sites resulted in seed production 4–12 times greater than control flowers, at which robbers accounted for 52–98% of all visits. Although 36% of buds and over 83% of all flowers were robbed, this had no direct influence on the recorded 36–61% respective abortion rates of buds and flowers. Opportunistic avian robbers appeared where normal robbers were absent; three avian robbers extensively used floral perforations made by Trigona bees, and all ancillary pollinators also robbed. Selection pressures from nectar robbers are discussed that may relate to plant reproductive fitness.  相似文献   

14.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

15.
Introduced honeybees have had a large impact on native ecosystems by disrupting native plant–pollinator interactions. However, little is known of the effect of honeybees on reproduction of bumblebee-pollinated plants. Seasonal displacement of native bumblebees by introduced honeybees (Apis mellifera and A. cerana) was observed in Pedicularis densispica, endemic to Hengduan Mountains, China, providing an opportunity for honeybee presence/absence comparisons. Five-year field surveys were conducted in one frequently disturbed population at Yila Pasture (YP). We compared pollination effectiveness (combinations of visitation rate, efficiency in pollen transfer, and potential geitonogamy) between native and introduced managed bees. The total visitation rate of native bees and subsequent reproductive output decreased progressively, but honeybee introduction resulted in at least twofold increase in visitation and 70 % increase in seed set. In general, native bumblebees, which have larger bodies and longer proboscises and spent more time probing single flowers, were more efficient than honeybees in terms of pollen removal and pollen deposition during first visits to virgin flowers. Compared with bumblebees, honeybees visited markedly fewer flowers in sequence within individual plants, potentially reducing geitonogamous pollination. Our data highlight that introduced honeybees can provide pollination service in terms of both quantity and quality for P. densispica. We suggest honeybee introduction as an effective way to augment pollination of P. densispica at disturbed and isolated sites.  相似文献   

16.
In central Chile, nectar robbing of Puya coerulea (Bromeliaceae) flowers by the austral blackbird, Curaeus curaeus, had a direct impact on the plant via removal of floral resources and, in some cases, damage or even destruction of flowers. These robbing visits also likely had an indirect impact on plant fitness due to the decreased rate of legitimate visits by the hummingbird Patagona gigas to inflorescences with many robbed flowers. The proportion of flowers within an inflorescence visited by P. gigas was inversely proportional to the ratio of robbed flowers.  相似文献   

17.

Background and Aims

Although the ecological and evolutionary consequences of foliar herbivory are well understood, how plants cope with floral damage is less well explored. Here the concept of tolerance, typically studied within the context of plant defence to foliar herbivores and pathogens, is extended to floral damage. Variation in tolerance to floral damage is examined, together with some of the mechanisms involved.

Methods

The study was conducted on Ipomopsis aggregata, which experiences floral damage and nectar removal by nectar-robbing bees. High levels of robbing can reduce seeds sired and produced by up to 50 %, an indirect effect mediated through pollinator avoidance of robbed plants. Using an experimental common garden with groups of I. aggregata, realized tolerance to robbing was measured. Realized tolerance included both genetic and environmental components of tolerance. It was hypothesized that both resource acquisition and storage traits, and traits involved in pollination would mitigate the negative effects of robbers.

Key Results

Groups of I. aggregata varied in their ability to tolerate nectar robbing. Realized tolerance was observed only through a component of male plant reproduction (pollen donation) and not through components of female plant reproduction. Some groups fully compensated for robbing while others under- or overcompensated. Evidence was found only for a pollination-related trait, flower production, associated with realized tolerance. Plants that produced more flowers and that had a higher inducibility of flower production following robbing were more able to compensate through male function.

Conclusions

Variation in realized tolerance to nectar robbing was found in I. aggregata, but only through an estimate of male reproduction, and traits associated with pollination may confer realized tolerance to robbing. By linking concepts and techniques from studies of plant–pollinator and plant–herbivore interactions, this work provides insight into the role of floral traits in pollinator attraction as well as plant defence.Key words: Compensation, herbivory, indirect effects, Ipomopsis aggregata, male reproductive success, nectar robbing, pollen donation, pollination, resistance, tolerance  相似文献   

18.
This paper examines the hypothesis that nectar robbing can affect plant reproductive success either positively or negatively. To this end, I investigated various aspects of the pollination ecology of a population of the herb Anthyllis vulneraria subsp. vulgaris in northwest Spain over 5 yr. By observing floral visitors, I found that the most important pollinator species was the long-tongued bee Anthophora acervorum, which accounted for ~45% of recorded insect visits. However, just over 45% of visits were by the nectar-robbing bumble bees Bombus terrestris and B. jonellus. Although the incidence of robbing differed considerably over 5 yr of study, the frequency in every season was very high (66.4-76.5% of robbing) except for 1997 (0% robbing). Despite this high frequency of robbing, robbed flowers had a higher probability of setting fruit than nonrobbed flowers in all years of the study (mean: 82.0 vs. 51.0%; excluding 1997). This increased fruit set in robbed flowers is directly related to bumble bee behavior because the robbers' bodies came into contact with both the anthers and stigmas while robbing. Thus, the robbers effect pollination. These results suggest that the effect of nectar robbers on plant reproductive success is dependent both on the robbers' behavior and on flower/inflorescence structure. The importance of nectar-robbing bumble bees on the reproductive success of A. vulneraria and its yearly high frequency suggest that the relationship between robbers and this plant is part of a successful long-term mutualism.  相似文献   

19.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

20.
The majority of flowering plants require animals for pollination, a critical ecosystem service in natural and agricultural systems. However, quantifying useful estimates of pollinator visitation rates can be nearly impossible when pollinator visitation is infrequent. We examined the utility of an indirect measure of pollinator visitation, namely pollen receipt by flowers, using the hummingbird-pollinated plant, Ipomopsis aggregata (Polemoniaceae). Our a priori hypothesis was that increased pollinator visitation should result in increased pollen receipt by stigmas. However, the relationship between pollinator visitation rate and pollen receipt may be misleading if pollen receipt is a function of both the number of pollinator visits and variation in pollinator efficiency at depositing pollen, especially in the context of variable floral morphology. Therefore, we measured floral and plant characters known to be important to pollinator visitation and/or pollen receipt in I. aggregata (corolla length and width and plant height) and used path analysis to dissect and compare the effect of pollinator visitation rate vs. pollinator efficiency on pollen receipt. Of the characters we measured, pollinator visitation rate (number of times plants were visited multiplied by the mean percentage of flowers probed per visit) had the strongest direct positive effect on pollen receipt, explaining 36% of the variation in pollen receipt. Plant height had a direct positive effect on pollinator visitation rate and an indirect positive effect on pollen receipt. Despite the supposition that floral characters would directly affect pollen receipt as a result of changes in pollinator efficiency, corolla length and width only weakly affected pollen receipt. These results suggest a direct positive link between pollinator visitation rate and pollen receipt across naturally varying floral morphology in I. aggregata. Understanding the relationship between pollinator visitation rate and pollen receipt may be of critical importance in systems where pollinator visitation is difficult to quantify.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号