首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The length and basal diameter of all lateral and terminal budsof vegetative annual shoots of 7-year-oldJuglans regia treeswere measured. All buds were dissected and numbers of cataphylls,embryonic leaves and leaf primordia were recorded. Each axillarybud was ranked according to the position of its associated leaffrom the apex to the base of its parent shoot. Bud size andcontent were analysed in relation to bud position and were comparedwith the size and number of leaves of shoots in equivalent positionswhich extended during the following growing season. Length andbasal diameter of axillary buds varied according to their positionon the parent shoot. Terminal buds contained more embryonicleaves than any axillary bud. The number of leaves was smallerfor apical and basal axillary buds than for buds in intermediatepositions on the parent shoot only. All new extended shootswere entirely preformed in the buds that gave rise to them.Lateral shoots were formed in the median part of the parentshoot. These lateral shoots derived from buds which were largerthan both apical and basal ones. Copyright 2001 Annals of BotanyCompany Juglans regia L., Persian walnut tree, branching pattern, preformation, bud content, shoot morphology  相似文献   

2.
Most apical resting buds of Choisya tenata include inflorescence buds in the axils of their lower consecutive paired scales. These inflorescences develop as apical buds which burst in spring. The whole of the lateral inflorescence system on a shoot originating from an apical bud may be viewed as a single, proliferous inflorescence. After the spring flush there are usually two other flushes of the same shoot within the same season, each of which may be accompanied by the development of lateral inflorescences as in the spring flush. Each further flush produces an apical 'lammas shoot'. As an apical lammas shoot elongates, lateral lammas shoots may also develop from upper, previously resting, axillary buds on the underlying stem segment of the preceding flush. Lateral inflorescences on apical lammas shoots arise from axillary buds preformed within the briefly-dormant apical buds terminating the preceding flush. These inflorescences, as well as the spring ones, represent proleptic shoots. The production of resting apical buds between two intra-season flushes of a shoot may be fugacous, without the differentiation of perfect bud-scales, and with curtailmenl ol internode elongation. As no environmental influence seems to be responsible for intra-season rhythmicity in development, this is said to be endorhythmic. The interrelations of proleptic to sylleptic shoots are discussed.  相似文献   

3.
It was postulated that the release of lateral buds from apical dominance is triggered by the immediate increase in apoplastic water potential (hydrostatic pressure) that is produced by shoot decapitation and that is rapidly transmitted throughout the plant. In experiments conducted to test this hypothesis the use of a strain gauge transducer capable of measuring bud growth with an accuracy of ± 0.1 μm, showed that growth of the inhibited lateral bud at the primary leaf node of Phaseolus vulgaris (L.) ev. Canadian Wonder was initiated within 1 to 5 s following shoot decapitation or excision of the primary leaves. When only the apical bud was excised the lateral bud showed a brief, transitory growth response of ca 1 min duration, but the axillary buds of the first and second trifoliate leaves were released from inhibition. Decapitation of the shoot just below the first trifoliate leaf induced a lateral bud response characterized by three distinct stages: a) a rapid initial growth response with a mean duration of 4.9 min b) a period of arrested growth, which varied in duration from 2 min to 4 h and c) the subsequent resumption of growth.
Excision of both primary leaves induced a rapid but transitory bud response of considerably greater duration than that induced by apical bud excision. Excision of the primary leaves prior to decapitation of the shoot eliminated the phase of arrested growth, which characterized the bud response to decapitation of the intact plant. The rapidity of the bud response to both shoot decapitation and leaf excision and the interaction between the effect of these two treatments are consistent with the hypothesis that competition for water plays a major role in the correlative inhibition of lateral buds.  相似文献   

4.
The impact of gall-inducing aphids on shoot development was analyzed in 900 shoots from 20 pistachio trees, Pistacia atlantica Desf. (Anacardiaceae): 600 in which the axillary—lateral buds were galled by Slavum wertheimae HRL during the previous growth season, and 300 ungalled shoots. Although P. atlantica is a compensating tree, and the aphids do not attack the apical buds, further development of shoots from the apical buds was stopped in 62% of the galled shoots, while only 8.7% of nongalled shoots stopped their growth. Further development was stopped more often on shoots carrying two or more galls than on shoots supporting only one gall. To assess the hypothesis that bud destruction by the aphids explains this pattern, a field experiment was conducted in 140 shoots, distributed across seven trees. One, two or three axillary buds from five shoots of each tree were removed for each treatment, and five other shoots were marked as controls. Only 14 shoots (10%) of the 140 did not develop. The growth of the other shoots was not very different among the treatments. The colonization of the apical shoots, which developed on previously treated shoots, by three other galling aphid species was monitored. Removing lateral buds considerably reduced the establishment of Geoica sp. galls (70% of them colonized control shoots), but weakly influenced Forda riccobonii (Stefani). It also contributed only 5% of the total variance of the distribution of Smynthurodes betae West. The different results of the survey and the experiment show that the impact of S. wertheimae galls on the future growth of shoots from apical buds is more complex than the simple physical destruction of the axillary buds. Handling editor: Graham Stone  相似文献   

5.
The development of axillary buds, terminal buds, and the shoots extended from them was studied inHydrangea macrophylla. The upper and lower parts in a nonflower-bearing shoot are discernible; the preformed part of a shoot develops into the lower part and the neoformed part into the upper part (Zhou and Hare, 1988). These two part are formed by the different degrees of internode elongation at early and late phases during a growth season, respectively. Leaf pairs in the neoformed part of the shoot are initiated successively with a plastochron of 5–20 days after the bud burst in spring. The upper axillary buds are initiated at approximately the same intervals as those of leaf pairs, but 10–30 days later than their subtending leaves. Changes in numbers of leaf pairs and in lengths of successive axillary buds show a pattern similar to the changes in internode lengths of the shoot at the mature stage. The uppermost axillary buds of the flower-bearing shoot often begin extending into new lateral shoots when the flowering phase has ended. The secondary buds in terminal and lower axillary buds are initiated and developed in succession during the late phase of the growth season. Internode elongation seems to be important in determining the degrees of development of the axillary buds. Pattern of shoot elongation is suggested to be relatively primitive. Significances of apical dominance and environmental conditions to shoot development are discussed.  相似文献   

6.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

7.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

8.
Two phases of bud activity were identified in the new growth of one-year-old erect coppice shoots on 11-year-old low-pruned stumps of mulberry (Morus alba L. cv. Shin-ichinose) in spring, the sprouting phase in which the majority of the buds, including the basal ones, sprout and elongate, and the dominance phase (starting 4–5 weeks after sprouting) during which the upper laterals begin to assert dominance and suppress the growth of lower laterals, becoming new leading shoots. In contrast, arching before sprouting markedly inhibited buds on the under side, leading to poor shoots. By late April, the sprouts on the upper side grew readily into new erect shoots, resulting in considerable dominance over those from the lateral sides. Of these erect shoots, those located closer to the stem base grew more in May and June. The effects of arching made during the sprouting phase (late April) on bud activity and shoot lengths were generally similar to those of earlier archings before spring bud bursting. Separation of the shoots from the upper and under sides by longitudinal, horizontal splitting of the arched stems in late April did not affect the inhibited elongation of the shoots from the under side. These results suggest that in the response to arching before and in late April, the effects are related to spring bud bursting and gravimorphism. In contrast, arching during and after the dominance phase (May) had no gravimorphic effects on growth of the shoots on the upper side, although there was a stimulation of outbreak of the buds on the upper side, which remained dormant during spring bud bursting. Continuous basal applications of abscisic acid in aqueous solution inhibited bud break and shoot growth of the postdormant erect stem segments, and defoliation of the new shoots markedly. In contrast, similar applications of an ethylene-releasing compound, Ethephon, depressed shoot elongation slightly, but enhanced defoliation greatly. Gibberellic acid (GA3) stimulated shoot elongation, but depressed leaf enlargement.  相似文献   

9.
Summary Shoot systems developed over 3 successive years were investigated on 55 understorey Tsuga canadensis (L.) Carr. trees. Paired comparisons of preformed-leaf content of terminal buds and numbers of leaves produced on new shoots showed that neoformed leaves were produced in large numbers. Parent-shoot character was not useful in predicting numbers of preformed leaves, was better related to total leaves produced, but left the majority of the variation unexplained. This reflected the capacity of any terminal bud to produce a shoot with more or less neoformation, depending on conditions for growth. All shoots over 6 cm long produced sylleptic shoots that bore from two to many leaves and were arranged in a mesitonic pattern along the parent. Some of the longer sylleptic shoots produced lateral buds or second-order sylleptic shoots. Monopodial second-year extensions of sylleptic-shoot axes followed an acrotonic pattern, as did proleptic shoots from the few lateral buds borne on the parent shoots. Such lateral buds were more frequent on shorter parent shoots: they typically occurred near the proximal and distal ends. Duration of shoot extension was positively correlated with shoot length: terminal buds became evident as shoot extension neared cessation.  相似文献   

10.
Patterns of spring development of lateral buds of mulberry (Morus alba L. cv. Shin-ichinose) coppice shoots on 11-year-old low-pruned stumps varied in response to girdling, pruning and arching. The erect controls showed a weak acrotonic (apex-favoring) growth habit, in which the majority of the buds, including the basal ones, sprouted and elongated in mid- and late April, and hence there was a prolonged imposition of dominance on the upper laterals in mid- and late May. In contrast, early spring girdling or pruning enhanced the activity of the upper buds of the proximal (lower) halves of the girdled stems or of the pruned stems, resulting in considerable dominance of the laterals from such buds in late April. Arching markedly inhibited buds on the under side of the arched stems, leading to poor shoots. By late April, the buds on the adaxial (upper) side readily grew into new vertical shoots, which dominated over the lateral ones. When studied by a multiple-node-cutting test, increased length of segments of post-dormant mulberry stems was accompanied by decreased bud activity of the segments and by decreased breaking ability of the lower buds within the segments, suggesting the importance of roots in the weak acrotonic habit of the erect stem in spring. By contrast, the acropetal influences of the attached stems can in part affect dominance relationships, perhaps mediated through competition for factors translocated from the roots. Continuous basal applications of abscisic acid inhibited bud break and shoot growth of the postdormant stem segments, but these inhibitory effects could be reversed by applied gibberellic acid A3 (GA3). Two phases of lateral bud dormancy in erect mulberry coppice shoots were identified. The first was characterized by a smaller breaking capacity in the upper buds than in the lower ones and hence by a basitonic (base-favoring) gradient in bud growth potential. The second phase corresponded to a restoration of these capabilities in the upper buds and to a change towards a linear gradient in bud growth potential, with disappearance of the dormant condition, in February and March. This gradient change during dormancy release may represent the physiological basis for the weak acrotonic habit of erect mulberry stems in spring.  相似文献   

11.

Background and Aims

The influence of temperature on the timing of budbreak in woody perennials is well known, but its effect on subsequent shoot growth and architecture has received little attention because it is understood that growth is determined by current temperature. Seasonal shoot development of grapevines (Vitis vinifera) was evaluated following differences in temperature near budbreak while minimizing the effects of other microclimatic variables.

Methods

Dormant buds and emerging shoots of field-grown grapevines were heated above or cooled below the temperature of ambient buds from before budbreak until individual flowers were visible on inflorescences, at which stage the shoots had four to eight unfolded leaves. Multiple treatments were imposed randomly on individual plants and replicated across plants. Shoot growth and development were monitored during two growing seasons.

Key Results

Higher bud temperatures advanced the date of budbreak and accelerated shoot growth and leaf area development. Differences were due to higher rates of shoot elongation, leaf appearance, leaf-area expansion and axillary-bud outgrowth. Although shoots arising from heated buds grew most vigorously, apical dominance in these shoots was reduced, as their axillary buds broke earlier and gave rise to more vigorous lateral shoots. In contrast, axillary-bud outgrowth was minimal on the slow-growing shoots emerging from buds cooled below ambient. Variation in shoot development persisted or increased during the growing season, well after temperature treatments were terminated and despite an imposed soil water deficit.

Conclusions

The data indicate that bud-level differences in budbreak temperature may lead to marked differences in shoot growth, shoot architecture and leaf-area development that are maintained or amplified during the growing season. Although growth rates commonly are understood to reflect current temperatures, these results demonstrate a persistent effect of early-season temperatures, which should be considered in future growth models.  相似文献   

12.
To examine plastic willow regrowth response to herbivory, we studied the effect of a boring insect, the swift moth Endoclita excrescens (Hepialidae: Lepidoptera), which does not remove apical meristems, on shoot growth in three willow species—Salix gilgiana, S. eriocarpa, and S. serissaefolia−by direct observations and experiments in the field. We hypothesized that the stem-boring could initiate new lateral bud activation, and result in secondary shoot regrowth without the removal of the primary apical meristems. There were significantly more lateral shoots on naturally attacked than unattacked stems, and a significant positive correlation between lateral shoot density and the number of swift moth tunnels per tree was observed for all three willow species. Artificial boring, and larval infestation, resulted in an increase in the number of lateral shoots, but did not affect growth of current-year shoots. The length of lateral shoots differed between species, being significantly longer in S. gilgiana than S. eriocarpa and S. serissaefolia. The results of this study show that compensatory regrowth can result even if herbivory does not remove the apical meristem. We argue that this type of plant compensatory response is probably widespread, given that the stem-boring is a common feeding type of insect herbivores.  相似文献   

13.
Evidence that cytokinin controls bud size and branch form in Norway spruce   总被引:3,自引:0,他引:3  
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   

14.
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   

15.
In Cordyline terminalis negatively geotropic leafy shoots and positively geotropic rhizomes develop from single axillary buds on either shoots or rhizomes. All axillary buds have similar morphogenetic potential when released from apical dominance. Experiments in which the orientation of the apex is changed, organs removed, or growth regulators applied indicate that after a rhizome is initiated, it is maintained as a rhizome by auxin originating in the leafy shoot. When auxin levels are lowered by changes in the orientation of the axis or shoot removal, the rhizome apex becomes a shoot apex, which appears to be the stable state of the actively growing apex. Benzyl adenine when applied exogenously to the apex or lateral buds has the same effect as lowering the auxin level. Gibberellic acid has no effect on the apex or lateral buds. High levels of exogenous naphthaleneacetic acid cause bud release and development of rhizomes from previously inhibited axillary buds of the shoot. However, it was not possible to convert a shoot apex into a rhizome apex by auxin treatment. It is suggested that the release of buds on the lower side of horizontal branches and of buds directly above a stem girdle is caused by high auxin levels on the lower side or distal to the girdle. The experimental results are discussed in relation to naturally occurring shoot-rhizome dimorphism.  相似文献   

16.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

17.
The size (length and diameter) and number of leaf primordia of winter buds of Nothofagus antarctica (G. Forster) Oerst. shrubs were compared with the size and number of leaves of shoots derived from buds in equivalent positions. Buds developed in two successive years were compared in terms of size and number of leaf primordia. Bud size and the number of leaf primordia per bud were greater for distal than for proximally positioned buds. Shoots that developed in the five positions closest to the distal end of their parent shoots had significantly more leaves than more proximally positioned shoots of the same parent shoots. The positive relationship between the size of a shoot and that of its parent shoot was stronger for proximal than for distal positions on the parent shoots. For each bud position on the parent shoots there were differences in the number of leaf primordia per bud between consecutive years. The correlations between the number of leaf primordia per bud and bud size, bud position and parent shoot size varied between years. Only shoots produced close to the distal end of a parent shoot developed neoformed leaves; more proximal sibling shoots consisted entirely of preformed leaves. Leaf neoformation, a process usually linked with high shoot vigour in woody plants, seems to be widespread among the relatively small shoots developed in N. antarctica shrubs, which may relate to the species' opportunistic response to disturbance.  相似文献   

18.
Cytokinin/Auxin Control of Apical Dominance in Ipomoea nil   总被引:3,自引:0,他引:3  
Although the concept of apical dominance control by the ratioof cytokinin to auxin is not new, recent experimentation withtransgenic plants has given this concept renewed attention.In the present study, it has been demonstrated that cytokinintreatments can partially reverse the inhibitory effect of auxinon lateral bud outgrowth in intact shoots of Ipomoea nil. Althoughless conclusive, this also appeared to occur in buds of isolatednodes. Auxin inhibited lateral bud outgrowth when applied eitherto the top of the stump of the decapitated shoot or directlyto the bud itself. However, the fact that cytokinin promotiveeffects on bud outgrowth are known to occur when cytokinin isapplied directly to the bud suggests different transport tissuesand/or sites of action for the two hormones. Cytokinin antagonistswere shown in some experiments to have a synergistic effectwith benzyladenine on the promotion of bud outgrowth. If theratio of cytokinin to auxin does control apical dominance, thenthe next critical question is how do these hormones interactin this correlative process? The hypothesis that shoot-derivedauxin inhibits lateral bud outgrowth indirectly by depletingcytokinin content in the shoots via inhibition of its productionin the roots was not supported in the present study which demonstratedthat the repressibility of lateral bud outgrowth by auxin treatmentsat various positions on the shoot was not correlated with proximityto the roots but rather with proximity to the buds. Resultsalso suggested that auxin in subtending mature leaves as wellas that in the shoot apex and adjacent small leaves may contributeto the apical dominance of a shoot. (Received September 24, 1996; Accepted March 16, 1997)  相似文献   

19.
The interaction of environmental and genetic variation in hazelnut (Corylus avellana) shoot development and the behaviour, survival, and colonisation of eriophyid bud mites (Phytoptus avellanae and Cecidophyopsis vermiformis) were studied. The distribution of galled buds on shoots indicated that mites colonised only those buds formed during the mite migration period. The point of entry is probably the growing shoot tip. Once within this structure, as the shoot develops the mites have access to a succession of newly-formed, bud primordia that are unprotected by bud scales. The relative accessibility of the apical meristem and bud primordia may affect host susceptibility.  相似文献   

20.
Buds of sweet orange, harvested from shoots of different timeof flushing and from different positions along the shoot, wereused to examine whether lack of burst of inserted buds was acharacteristic of the bud. Bursting of inserted buds was significantlyslower in buds taken from (a) older branches (b) shoots producedunder winter conditions, and (c) basal rather than apical budson the same shoot. The slowness to burst when transferred matched a tendency todormancy in buds on shoot segments grown in vitro, suggestingthat the variation in budburst was intrinsic to the bud. Budburstwas correlated with the extent of secondary bud development;the majority of buds from apical regions of the shoot had developeda secondary bud by the time of implantation, but basal budshad not. Adequate vascular connections with the host tissueswere found in both burst and unburst buds. Citrus sinensis (L.) Osbeck, sweet orange, buds, endodormancy, budding  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号